Crystals and Crystal Growth

Crystals and Crystal Growth

Author: Wilfred Carter

Publisher: Nova Science Publishers

Published: 2015

Total Pages: 0

ISBN-13: 9781634637916

DOWNLOAD EBOOK

Hydrothermal crystal growth offers a complementary alternative to many of the classical techniques of crystal growth used to synthesise new materials and grow bulk crystals for specific applications. This specialised technique is often capable of growing crystals at temperatures well below their melting points and thus potentially offers routes to new phases or the growth of bulk crystals with less thermal strain. Borate crystals are widely used as nonlinear optical, laser and luminescent materials due to their diversified structures, and good chemical and physical properties. The growth of high-quality borate crystals is required for their applications. A fundamental problem for borate crystal growth is the high-temperature melt structures in the crystal growth systems. This book discusses several crystals and the crystal growth processes.


Crystal Growth Technology

Crystal Growth Technology

Author: Hans J. Scheel

Publisher: John Wiley & Sons

Published: 2009-07-31

Total Pages: 695

ISBN-13: 0470491108

DOWNLOAD EBOOK

This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: * General aspects of crystal growth technology * Silicon * Compound semiconductors * Oxides and halides * Crystal machining * Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.


Springer Handbook of Crystal Growth

Springer Handbook of Crystal Growth

Author: Govindhan Dhanaraj

Publisher: Springer Science & Business Media

Published: 2010-10-20

Total Pages: 1823

ISBN-13: 3540747613

DOWNLOAD EBOOK

Over the years, many successful attempts have been chapters in this part describe the well-known processes made to describe the art and science of crystal growth, such as Czochralski, Kyropoulos, Bridgman, and o- and many review articles, monographs, symposium v- ing zone, and focus speci cally on recent advances in umes, and handbooks have been published to present improving these methodologies such as application of comprehensive reviews of the advances made in this magnetic elds, orientation of the growth axis, intro- eld. These publications are testament to the grow- duction of a pedestal, and shaped growth. They also ing interest in both bulk and thin- lm crystals because cover a wide range of materials from silicon and III–V of their electronic, optical, mechanical, microstructural, compounds to oxides and uorides. and other properties, and their diverse scienti c and The third part, Part C of the book, focuses on - technological applications. Indeed, most modern ad- lution growth. The various aspects of hydrothermal vances in semiconductor and optical devices would growth are discussed in two chapters, while three other not have been possible without the development of chapters present an overview of the nonlinear and laser many elemental, binary, ternary, and other compound crystals, KTP and KDP. The knowledge on the effect of crystals of varying properties and large sizes. The gravity on solution growth is presented through a c- literature devoted to basic understanding of growth parison of growth on Earth versus in a microgravity mechanisms, defect formation, and growth processes environment.


Crystal Growth Technology

Crystal Growth Technology

Author: K. Byrappa

Publisher: Springer Science & Business Media

Published: 2003-04-17

Total Pages: 618

ISBN-13: 9783540003670

DOWNLOAD EBOOK

Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.


Crystal Growth of Silicon for Solar Cells

Crystal Growth of Silicon for Solar Cells

Author: Kazuo Nakajima

Publisher: Springer Science & Business Media

Published: 2010-03-12

Total Pages: 259

ISBN-13: 3642020445

DOWNLOAD EBOOK

This book, a continuation of the series “Advances in Materials Research,” is intended to provide the general basis of the science and technology of crystal growth of silicon for solar cells. In the face of the destruction of the global environment,the degradationofworld-widenaturalresourcesandtheexha- tion of energy sources in the twenty-?rst century, we all have a sincere desire for a better/safer world in the future. In these days, we strongly believe that it is important for us to rapidly developanewenvironment-friendlycleanenergyconversionsystemusingsolar energyastheultimatenaturalenergysource. Forinstance,mostofournatural resources and energy sources will be exhausted within the next 100 years. Speci?cally, the consumption of oil, natural gas, and uranium is a serious problem. Solar energy is the only ultimate natural energy source. Although 30% of total solar energy is re?ected at the earth’s surface, 70% of total solar energy can be available for us to utilize. The available solar energy amounts to severalthousand times larger than the world’s energy consumption in 2000 of about 9,000 Mtoe (M ton oil equivalent). To manage 10% of the world’s energy consumption at 2050 by solar energy, we must manufacture 40 GW solar cells per year continuously for 40 years. The required silicon feedstock is about 400,000 ton per year. We believe that this is an attainable target, since it can be realized by increasing the world production of silicon feedstock by 12times asmuchasthe presentproductionat2005.


Introduction to Crystal Growth and Characterization

Introduction to Crystal Growth and Characterization

Author: Klaus-Werner Benz

Publisher: John Wiley & Sons

Published: 2014-07-28

Total Pages: 559

ISBN-13: 3527684344

DOWNLOAD EBOOK

This new textbook provides for the first time a comprehensive treatment of the basics of contemporary crystallography and crystal growth in a single volume. The reader will be familiarized with the concepts for the description of morphological and structural symmetry of crystals. The architecture of crystal structures of selected inorganic and molecular crystals is illustrated. The main crystallographic databases as data sources of crystal structures are described. Nucleation processes, their kinetics and main growth mechanism will be introduced in fundamentals of crystal growth. Some phase diagrams in the solid and liquid phases in correlation with the segregation of dopants are treated on a macro- and microscale. Fluid dynamic aspects with different types of convection in melts and solutions are discussed. Various growth techniques for semiconducting materials in connection with the use of external field (magnetic fields and microgravity) are described. Crystal characterization as the overall assessment of the grown crystal is treated in detail with respect to - crystal defects - crystal quality - field of application Introduction to Crystal Growth and Characterization is an ideal textbook written in a form readily accessible to undergraduate and graduate students of crystallography, physics, chemistry, materials science and engineering. It is also a valuable resource for all scientists concerned with crystal growth and materials engineering.


50 Years Progress in Crystal Growth

50 Years Progress in Crystal Growth

Author: Robert Feigelson

Publisher: Elsevier

Published: 2004-07-09

Total Pages: 269

ISBN-13: 0080489931

DOWNLOAD EBOOK

There is no question that the field of solid state electronics, which essentially began with work at Bell laboratories just after World War II, has had a profound impact on today's Society. What is not nearly so widely known is that advances in the art and science of crystal growth underpin this technology. Single crystals, once valued only for their beauty, are now found, in one form or another in most electronic, optoelectronic and numerous optical devices. These devices, in turn, have permeated almost every home and village throughout the world. In fact it is hard to imagine what our electronics industry, much less our entire civilization, would have been like if crystal growth scientists and engineers were unable to produce the large, defect free crystals required by device designers. This book brings together two sets of related articles describing advances made in crystal growth science and technology since World War II. One set is from the proceedings of a Symposium held in August 2002 to celebrate 50 years of progress in the field of crystal growth. The second contains articles previously published in the newsletter of the American Association for Crystal Growth in a series called "Milestones in Crystal Growth".The first section of this book contains several articles which describe some of the early history of crystal growth prior to the electronics revolution, and upon which modern crystal growth science and technology is based. This is followed by a special article by Prof. Sunagawa which provides some insight into how the successful Japanese crystal growth industry developed. The next section deals with crystal growth fundamentals including concepts of solute distribution, interface kinetics, constitutional supercooling, morphological stability and the growth of dendrites. The following section describes the growth of crystals from melts and solutions, while the final part involves thin film growth by MBE and OMVPE.These articles were written by some of the most famous theorists and crystal growers working in the field. They will provide future research workers with valuable insight into how these pioneering discoveries were made, and show how their own research and future devices will be based upon these developments.·Articles written by some of the most famous theorists and crystal growers working in the field·Valuable insight into how pioneering discoveries were made.·Show how their own research and future devices will be based upon these developments


Shaped Crystals

Shaped Crystals

Author: Tsuguo Fukuda

Publisher: Springer Science & Business Media

Published: 2007-08-10

Total Pages: 336

ISBN-13: 354071295X

DOWNLOAD EBOOK

This volume offers an overview of the growth of shaped crystals (oxides, fluorides, etc.) by the micro-pulling-down technique. Both melt and solution (flux) growth are considered. The advantages and disadvantages of the method are discussed in detail and compared with related crystal-growth processes. The authors attempt to give a practical introduction to this technique, thereby also explaining how its application can help to solve problems commonly encountered in other melt-growth methods.


Vapor Crystal Growth and Characterization

Vapor Crystal Growth and Characterization

Author: Ching-Hua Su

Publisher: Springer

Published: 2020-01-15

Total Pages: 215

ISBN-13: 9783030396541

DOWNLOAD EBOOK

The book describes developments in the crystal growth of bulk II-VI semiconductor materials. A fundamental, systematic, and in-depth study of the physical vapor transport (PVT) growth process is the key to producing high-quality single crystals of semiconductors. As such, the book offers a comprehensive overview of the extensive studies on ZnSe and related II-VI wide bandgap compound semiconductors, such as CdS, CdTe, ZnTe, ZnSeTe and ZnSeS. Further, it shows the detailed steps for the growth of bulk crystals enabling optical devices which can operate in the visible spectrum for applications such as blue light emitting diodes, lasers for optical displays and in the mid-IR wavelength range, high density recording, and military communications. The book then discusses the advantages of crystallization from vapor compared to the conventional melt growth: lower processing temperatures, the purification process associated with PVT, and the improved surface morphology of the grown crystals, as well as the necessary drawbacks to the PVT process, such as the low and inconsistent growth rates and the low yield of single crystals. By presenting in-situ measurements of transport rate, partial pressures and interferometry, as well as visual observations, the book provides detailed insights into in the kinetics during the PVT process. This book is intended for graduate students and professionals in materials science as well as engineers preparing and developing optical devices with semiconductors.