These paradoxes are called “neutrosophic” since they are based on indeterminacy (or neutrality, i.e. neither true nor false), which is the third component in neutrosophic logic. We generalize the Venn Diagram to a Neutrosophic Diagram, which deals with vague, inexact, ambiguous, illdefined ideas, statements, notions, entities with unclear borders. We define the neutrosophic truth table and introduce two neutrosophic operators (neuterization and antonymization operators) give many classes of neutrosophic paradoxes.
These paradoxes are called “neutrosophic” since they are based on indeterminacy (or neutrality, i.e. neither true nor false), which is the third component in neutrosophic logic. We generalize the Venn diagram to a Neutrosophic Diagram, which deals with vague, inexact, ambiguous, illdefined ideas, statements, notions, entities with unclear borders. We define the neutrosophic truth table and introduce two neutrosophic operators (neuterization and antonymization operators) give many classes of neutrosophic paradoxes.
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples of indeterminacies and several methods to deal with these specific indeterminacies, but many other indeterminacies there exist in our everyday life, and they have to be studied and resolved using similar of different methods. Therefore, more research should to be done in the field of neutrosophics. The author introduces for the first time the notions of neutrosophic mereo-limit, neutrosophic mereo-continuity (in a different way from the classical semi-continuity), neutrosophic mereo-derivative and neutrosophic mereo-integral (both in different ways from the fractional calculus), besides the classical definitions of limit, continuity, derivative, and integral respectively. Future research may be done in the neutrosophic fractional calculus. It means that in neutrosophic calculus there are limits, continuity, derivatives, and integrals that are not complete, i.e. there are neutrosophic functions that at a given point may have a degree of a limit (not 100%) called mereo-limit, or may be continuous in a certain degree (not 100%) called mereo-continuity, or may be differentiable or integrable in a certain degree (not 100%) called mereo-derivatives and respectively mereo-integrals. These occur because of indeterminacies...
This is an eclectic tome of 100 papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory,information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics ¿ containing 800 pages.It was my preoccupation and collaboration as author, co-author, translator, or co-translator, and editor with many scientists from around the world for long time. Many ideas from this book are to be developed and expanded in future explorations.
In this book, we introduce for the first time the notions of neutrosophic measure and neutrosophic integral, and we develop the 1995 notion of neutrosophic probability. We present many practical examples. It is possible to define the neutrosophic measure and consequently the neutrosophic integral and neutrosophic probability in many ways, because there are various types of indeterminacies, depending on the problem we need to solve. Neutrosophics study the indeterminacy. Indeterminacy is different from randomness. It can be caused by physical space materials and type of construction, by items involved in the space, etc.
This volume is a collection of ten papers, written by different authors and co-authors (listed in the order of the papers): F. Smarandache, Jun Ye, M. Shabir, M. Ali, M. Naz, F. Yuhua, A. A. Salama, S. Vladutescu, Y. Guo, A. Sengur, S. Broumi, P. Chi, and P. Liu. In first paper, the author proposed Neutrosophic Measure and neutrosophic Integral. Another Form of Correlation Coefficient between Single Valued Neutrosophic Sets and Multiple Attribute Decision-Making Method is proposed in the second paper. Soft Neutrosophic Group is studied in third paper. In fourth paper Neutrosophic Example in Physics is discussed. Similarly in fifth paper Filters via Neutrosophic Crisp Sets are discussed. In paper six, Commnication vs. Information, an Axiomatic Neutrosophic Solution is presented by the authors. A Novel Image Segmentation Algorithm Based on Neutrosophic Filtering and Level Set is given in seventh paper. Paper eight is about to Neutrosophic Crisp Points and Neutrosophic Crisp Ideals. In the next paper Several Similarity Measures of Neutrosophic Sets are discussed. The authors introduced An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Sets in the last paper.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This book is a collection of articles, notes, reviews, blogs and abstracts on Physics. Some are published for the first time here, some were previously published in journals, and revised here. We approach a novel form of plasma, Unmatter Plasma. The electron-positron beam plasma was generated in the laboratory in the beginning of 2015. This experimental fact shows that unmatter, a new form of matter that is formed by matter and antimatter bind together (mathematically predicted a decade ago) really exists. Further, we generalize the Lorentz Contraction Factor for the case when the lengths are moving at an oblique angle with respect to the motion direction, and show that the angles of the moving relativistic objects are distorted. Then, using the Oblique-Length Contraction Factor, we show several trigonometric relations between distorted and original angles of moving object lengths in the Special Theory of Relativity. We also discuss some paradoxes which we call “neutrosophic” since they are based on indeterminacy (or neutrality, i.e. neither true nor false), which is the third component in neutrosophic logic. We generalize the Venn diagram to a Neutrosophic Diagram, which deals with vague, inexact, ambiguous, ill-defined ideas, statements, notions, entities with unclear borders. We define the neutrosophic truth table, then we introduce two neutrosophic operators (neuterization and antonymization operators), and give many classes of neutrosophic paradoxes. Other topics addressed in this book are: neutrosophic physics as a new field of research, neutrosophic numbers in physics, neutrosophic degree of paradoxicity, unparticle and unmatter, multispace and multistructure, nucleon clusters, and others.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.