NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2003-01-01

Total Pages: 459

ISBN-13: 8120321863

DOWNLOAD EBOOK

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2017-05-01

Total Pages: 574

ISBN-13: 812035334X

DOWNLOAD EBOOK

The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Author: Lakhmi C. Jain

Publisher: CRC Press

Published: 2020-01-29

Total Pages: 366

ISBN-13: 1000722945

DOWNLOAD EBOOK

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.


Compensatory Genetic Fuzzy Neural Networks and Their Applications

Compensatory Genetic Fuzzy Neural Networks and Their Applications

Author: Yan-Qing Zhang

Publisher: World Scientific

Published: 1998

Total Pages: 206

ISBN-13: 9789810233495

DOWNLOAD EBOOK

This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.


Genetic Algorithms and Fuzzy Logic Systems

Genetic Algorithms and Fuzzy Logic Systems

Author: Elie Sanchez

Publisher: World Scientific

Published: 1997

Total Pages: 254

ISBN-13: 9789810224233

DOWNLOAD EBOOK

Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms.


COMPUTATIONAL STRUCTURAL MECHANICS

COMPUTATIONAL STRUCTURAL MECHANICS

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2001-01-01

Total Pages: 798

ISBN-13: 8120317343

DOWNLOAD EBOOK

This class-room tested book, representing the teaching experience of over two decades by the authors, is designed to cater to the needs of senior undergraduate and first-year postgraduate students of civil engineering for a course in Advanced Structural Analysis/Matrix Methods of Structural Analysis/Computer Methods of Structural Analysis. The book endeavours to fulfil two principal objectives. First, it acquaints students with the matrix methods of structural analysis and their underlying concepts and principles. Second, it demonstrates the development of well-structured computer programs for the analysis of structures by the matrix methods. After a thorough presentation of the mathematical tools and theory required for linear elastic analysis of structural systems, the text focuses on the flexibility and stiffness methods of analysis for computer usage. The direct stiffness method which forms the backbone of most computer programs is also discussed. Besides, the physical behaviour of structures is analyzed throughout with the help of axial thrust, shear force, bending moment and deflected shape diagrams. A large number of worked-out examples are included to amplify the concepts and to illustrate the effect of external loads, including the effect of temperature, lack of fit, and settlement of supports, etc. The CD-ROM contains many illustrative computer programs and the usage of modern packages such as Excel and Matlab. The book will also be a useful reference for practising structural engineers who wish to pursue the versatility of matrix methods as a tool for computer applications.


Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Author: Nikola K. Kasabov

Publisher: Marcel Alencar

Published: 1996

Total Pages: 581

ISBN-13: 0262112124

DOWNLOAD EBOOK

Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.


Soft Computing in Water Resources Engineering

Soft Computing in Water Resources Engineering

Author: G. Tayfur

Publisher: WIT Press

Published: 2014-11-02

Total Pages: 289

ISBN-13: 1845646363

DOWNLOAD EBOOK

Engineers have attempted to solve water resources engineering problems with the help of empirical, regression-based and numerical models. Empirical models are not universal, nor are regression-based models. The numerical models are, on the other hand, physics-based but require substantial data measurement and parameter estimation. Hence, there is a need to employ models that are robust, user-friendly, and practical and that do not have the shortcomings of the existing methods. Artificial intelligence methods meet this need. Soft Computing in Water Resources Engineering introduces the basics of artificial neural networks (ANN), fuzzy logic (FL) and genetic algorithms (GA). It gives details on the feed forward back propagation algorithm and also introduces neuro-fuzzy modelling to readers. Artificial intelligence method applications covered in the book include predicting and forecasting floods, predicting suspended sediment, predicting event-based flow hydrographs and sedimentographs, locating seepage path in an earth-fill dam body, and the predicting dispersion coefficient in natural channels. The author also provides an analysis comparing the artificial intelligence models and contemporary non-artificial intelligence methods (empirical, numerical, regression, etc.). The ANN, FL, and GA are fairly new methods in water resources engineering. The first publications appeared in the early 1990s and quite a few studies followed in the early 2000s. Although these methods are currently widely known in journal publications, they are still very new for many scientific readers and they are totally new for students, especially undergraduates. Numerical methods were first taught at the graduate level but are now taught at the undergraduate level. There are already a few graduate courses developed on AI methods in engineering and included in the graduate curriculum of some universities. It is expected that these courses, too, will soon be taught at the undergraduate levels.


Intelligent and Other Computational Techniques in Insurance

Intelligent and Other Computational Techniques in Insurance

Author: A. F. Shapiro

Publisher: World Scientific

Published: 2003

Total Pages: 690

ISBN-13: 9812387188

DOWNLOAD EBOOK

This book presents recent advances in the theory and implementation of intelligent and other computational techniques in the insurance industry. The paradigms covered encompass artificial neural networks and fuzzy systems, including clustering versions, optimization and resampling methods, algebraic and Bayesian models, decision trees and regression splines. Thus, the focus is not just on intelligent techniques, although these constitute a major component; the book also deals with other current computational paradigms that are likely to impact on the industry. The application areas include asset allocation, asset and liability management, cash-flow analysis, claim costs, classification, fraud detection, insolvency, investments, loss distributions, marketing, pricing and premiums, rate-making, retention, survival analysis, and underwriting.