Neural Modeling and Neural Networks

Neural Modeling and Neural Networks

Author: F. Ventriglia

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 363

ISBN-13: 1483287904

DOWNLOAD EBOOK

Research in neural modeling and neural networks has escalated dramatically in the last decade, acquiring along the way terms and concepts, such as learning, memory, perception, recognition, which are the basis of neuropsychology. Nevertheless, for many, neural modeling remains controversial in its purported ability to describe brain activity. The difficulties in "modeling" are various, but arise principally in identifying those elements that are fundamental for the expression (and description) of superior neural activity. This is complicated by our incomplete knowledge of neural structures and functions, at the cellular and population levels. The first step towards enhanced appreciation of the value of neural modeling and neural networks is to be aware of what has been achieved in this multidisciplinary field of research. This book sets out to create such awareness. Leading experts develop in twelve chapters the key topics of neural structures and functions, dynamics of single neurons, oscillations in groups of neurons, randomness and chaos in neural activity, (statistical) dynamics of neural networks, learning, memory and pattern recognition.


Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications

Author: Huajin Tang

Publisher: Springer Science & Business Media

Published: 2007-03-12

Total Pages: 310

ISBN-13: 3540692258

DOWNLOAD EBOOK

Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.


Advanced Models of Neural Networks

Advanced Models of Neural Networks

Author: Gerasimos G. Rigatos

Publisher: Springer

Published: 2014-08-27

Total Pages: 296

ISBN-13: 3662437643

DOWNLOAD EBOOK

This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.


Neural Network Models

Neural Network Models

Author: Philippe de Wilde

Publisher: Springer Science & Business Media

Published: 1997-05-30

Total Pages: 76

ISBN-13: 9783540761297

DOWNLOAD EBOOK

Providing an in-depth treatment of neural network models, this volume explains and proves the main results in a clear and accessible way. It presents the essential principles of nonlinear dynamics as derived from neurobiology, and investigates the stability, convergence behaviour and capacity of networks.


Fundamentals of Neural Network Modeling

Fundamentals of Neural Network Modeling

Author: Randolph W. Parks

Publisher: MIT Press

Published: 1998

Total Pages: 450

ISBN-13: 9780262161756

DOWNLOAD EBOOK

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble


Neural Modeling

Neural Modeling

Author: Ronald MacGregor

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1468421905

DOWNLOAD EBOOK

The purpose of this book is to introduce and survey the various quantitative methods which have been proposed for describing, simulating, embodying, or characterizing the processing of electrical signals in nervous systems. We believe that electrical signal processing is a vital determinant of the functional organization of the brain, and that in unraveling the inherent complexities of this processing it will be essential to utilize the methods of quantification and modeling which have led to crowning successes in the physical and engineering sciences. In comprehensive terms, we conceive neural modeling to be the attempt to relate, in nervous systems, function to structure on the basis of operation. Sufficient knowledge and appropriate tools are at hand to maintain a serious and thorough study in the area. However, work in the area has yet to be satisfactorily integrated within contemporary brain research. Moreover, there exists a good deal of inefficiency within the area resulting from an overall lack of direction, critical self-evaluation, and cohesion. Such theoretical and modeling studies as have appeared exist largely as fragmented islands in the literature or as sparsely attended sessions at neuroscience conferences. In writing this book, we were guided by three main immediate objectives. Our first objective is to introduce the area to the upcoming generation of students of both the hard sciences and psychological and biological sciences in the hope that they might eventually help bring about the contributions it promises.


Artificial Neural Network Modelling

Artificial Neural Network Modelling

Author: Subana Shanmuganathan

Publisher: Springer

Published: 2016-02-03

Total Pages: 468

ISBN-13: 3319284959

DOWNLOAD EBOOK

This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.


Physical Models of Neural Networks

Physical Models of Neural Networks

Author: Tam s Geszti

Publisher: World Scientific

Published: 1990

Total Pages: 158

ISBN-13: 9789810200121

DOWNLOAD EBOOK

This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works.