Neural Mechanisms of Cardiovascular Regulation responds to current questions about how neurons in the central and peripheral nervous systems regulate the cardiovascular system. It includes a series of thoughtful reviews that are intended to provoke and illuminate the reader, with the intention of revealing some of the ideas that current practitioners in the field of cardiovascular research are using to generate their current studies.
The Studies in Physiology series provides a concise introduction to developments in complex areas of physiology for a wide audience. Published on behalf of the Physiology Society, Cardiovascular Regulation provides an up-to-date account of our current understanding of the control of the cardiovascular system that is not covered by existing textbooks. Both students and lecturers of cardiovascular and exercise physiology, medicine, dentistry and biomedical sciences will find this book informative and easy to read. Each chapter has numerous summary boxes. 'Essential reading' suggestions provide additional reading for undergraduates and the suggestions for 'Further reading' cover the subject to postgraduate level.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
This book is an attempt to indicate to researchers and clinicians a simple way to approach the complexity of cardiovascular neural regulation. A conceptual pillar like homeostasis is contrasted with instability and a continuous interaction of opposing mechanisms that have negative and positive feedback characteristics, and is considered to subserve the multitude of patterns pertaining to physiology. However, in pathophysiological conditions the final design is most often replaced by largely purposeless neural mechanisms. The complexity of cardiovascular neural regulation, reflected by the state of sympathovagal balance, is also assessed in the frequency domain. Power spectrum analysis of heart rate and arterial pressure variability, a sophisticated but simply explained approach, provides an unprecedented tool to evaluate this interaction in both physiological and pathophysiological conditions. The elementary characteristics of nonlinear dynamics are also outlined. Finally, the need for an ethical structure for science and medicine is analyzed.
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
The third edition of this popular and successful text has been fully revised and updated to take account of recent advances in the field, particularly in the physiology and pathophysiology of many disease processes. The text retains the original format of relevant physiology, test selection and test interpretation by case example. Essential aspects of paediatric chemical pathology, inborn errors of metabolism, reproductive endocrinology, tumours and toxicology are now included. As chemical pathology is receiving specific attention in medical courses, this text has been adapted to present this information in an understandable form, making it suitable for medical undergraduates and for medical and science postgraduates studying for exams of Colleges of Pathology and professional associations."
Praised for its concise coverage, this highly accessible monograph lays a foundation for understanding the underlying concepts of normal cardiovascular function and offers a welcome alternative to a more mechanistically oriented approach or an encyclopedic physiology text. Clear explanations, ample illustrations and engaging clinical cases and problems provide the perfect guidance for self-directed learning and prepare you to excel in clinical practice.
This fourth edition of Autonomic Failure (now available in paperback) covers the many recent advances made in our understanding of the autonomic nervous system. There are 20 new chapters and extensive revisions of all other contributions. Autonomic failure, fourth edition makes diagnosis increasingly precise by fully evaluating the underlying anatomical and functional deficits, thereby allowing more effective treatment. This new edition continues to provide practitioners from a variety of fields, including neurology, cardiology, geriatric medicine, diabetology, and internal medicine, with a rational guide to aid in the recognition and management of autonomic disorders. The book starts with an updated classification of autonomic disorders and a history of the autonomic nervous system. The first two sections of the book deal with the fundamental aspects of autonomic structure, function, and integration. There are new chapters dealing with neurobiology, nerve growth factors, genetic mutations, neural and hormonal control of the cerebral circulation, innervation of the lung, and pathophysiological mechanisms causing nausea and vomiting. Advances in the clinical management of autonomic disorders are critically dependent on the bridge made between the basic and applied sciences.
First Published in 1994, this book provides a comprehensive, up-to-date compilation of reviews of recent literature on the anatomy, physiology, and pharmacology of the nucleus of the solitary tract (NTS). The chapters are written by internationally recognized experts in the field and include never-before-published data, diagrams, and figures.
A timely symposium entitled Body-Fluid Homeostasis: Transduction and Integration was held at Araraquara, São Paulo, Brazil in 2011. This meeting was convened as an official satellite of a joint gathering of the International Society for Autonomic Neuroscience (ISAN) and the American Autonomic Society (AAS) held in Buzios, Rio de Janeiro. Broad international participation at this event generated stimulating discussion among the invited speakers, leading to the publication of Neurobiology of Body Fluid Homeostasis: Transduction and Integration. Drawn from the proceedings and filled with rich examples of integrative neurobiology and regulatory physiology, this volume: Provides updated research using human and animal models for the control of bodily fluids, thirst, and salt appetite Explores neural and endocrine control of body fluid balance, arterial pressure, thermoregulation, and ingestive behavior Discusses recent developments in molecular genetics, cell biology, and behavioral plasticity Reviews key aspects of brain serotonin and steroid and peptide control of fluid consumption and arterial pressure The book highlights research conducted by leading scientists on signal transduction and sensory afferent mechanisms, molecular genetics, perinatal and adult long-term influences on regulation, central neural integrative circuitry, and autonomic/neuroendocrine effector systems. The findings discussed by the learned contributors are relevant for a basic understanding of disorders such as heat injury, hypertension, and excess salt intake. A unique reference on the neurobiology of body fluid homeostasis, this volume is certain to fuel additional research and stimulate further debate on the topic.