Near Surface Disposal Facilities for Radioactive Waste

Near Surface Disposal Facilities for Radioactive Waste

Author: International Atomic Energy Agency

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9789201143136

DOWNLOAD EBOOK

This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.


Siting of Near Surface Disposal Facilities

Siting of Near Surface Disposal Facilities

Author: International Atomic Energy Agency

Publisher:

Published: 1994

Total Pages: 56

ISBN-13:

DOWNLOAD EBOOK

Defines the site selection process and criteria for identifying suitable near surface disposal facilities. This guide provides guidelines for the siting process management and specifies the data needed to apply the relevant selection criteria. (Please note: this publication will be superseded by DS356)


Deep Geological Disposal of Radioactive Waste

Deep Geological Disposal of Radioactive Waste

Author: W. R. Alexander

Publisher: Elsevier

Published: 2011-07-29

Total Pages: 293

ISBN-13: 0080468888

DOWNLOAD EBOOK

Deep Geological Disposal of Radioactive Waste presents a critical review of designing, siting, constructing and demonstrating the safety and environmental impact of deep repositories for radioactive wastes. It is structured to provide a broad perspective of this multi-faceted, multi-disciplinary topic: providing enough detail for a non-specialist to understand the fundamental principles involved and with extensive references to sources of more detailed information. Emphasis is very much on "deep geological disposal – at least some tens of metres below land surface and, in many cases, many hundred of metres deep. Additionally, only radioactive wastes are considered directly – even though such wastes often contain also significant chemotoxic or otherwise hazardous components. Many of the principles involved are generally applicable to other repository options (e.g. near-surface or on-surface disposal) and, indeed, to other types of hazardous waste. - Presents a current critical review in designing, siting, constructing and demonsrating the safety and environmental impact of deep repositories for radwaste - Addresses the fundamental principles of radioactive waste with up-to-date examples and real-world case studies - Written for a multi-disciplinary audience, with an appropriate level of detail to allow a non-specialist to understand


Disposition of High-Level Waste and Spent Nuclear Fuel

Disposition of High-Level Waste and Spent Nuclear Fuel

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-05

Total Pages: 215

ISBN-13: 0309073170

DOWNLOAD EBOOK

Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.


Management of Disused Sealed Radioactive Sources

Management of Disused Sealed Radioactive Sources

Author: International Atomic Energy Agency

Publisher:

Published: 2014-12-02

Total Pages: 177

ISBN-13: 9789201032140

DOWNLOAD EBOOK

This publication summarizes the reviewed information distributed in previous IAEA publications and provides an up to date, overall picture of the management of disused sealed radioactive sources (DSRS) based upon the current status and trends in this field. It incorporates the most recent experience in source management, including newly developed techniques used for DSRS conditioning and storage. Problems encountered and lessons learned are also highlighted in the publication in order to help avoid the mistakes commonly made in the past in managing disused sources.


Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant

Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant

Author: National Research Council

Publisher: National Academies Press

Published: 2001-06-11

Total Pages: 156

ISBN-13: 0309183138

DOWNLOAD EBOOK

The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.


Waste Forms Technology and Performance

Waste Forms Technology and Performance

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-05

Total Pages: 308

ISBN-13: 0309187338

DOWNLOAD EBOOK

The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.


Low-level Radioactive Waste Repositories

Low-level Radioactive Waste Repositories

Author: OECD Nuclear Energy Agency

Publisher: OECD Publishing

Published: 1999

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

This report sets out the costs of operating disposal sites for LLW in OECD countries, as well as the factors that may affect the costs of sites being developed.