Emphasizes Resilient Policies, Rather Than Rigid PhilosophyEconomic and environmental consequences of natural and man-made disasters have grown exponentially during the past few decades. Whether from hurricanes, chemical spills, terrorist incidents, or other catastrophes, the negative impacts can often be felt on a global scale. Natural Hazards Ana
Initial priorities for U.S. participation in the International Decade for Natural Disaster Reduction, declared by the United Nations, are contained in this volume. It focuses on seven issues: hazard and risk assessment; awareness and education; mitigation; preparedness for emergency response; recovery and reconstruction; prediction and warning; learning from disasters; and U.S. participation internationally. The committee presents its philosophy of calls for broad public and private participation to reduce the toll of disasters.
CDRM 5 explains the the practical aspects of using quantitative risk assessment (QRA) to develop optimal engineering designs that mitigate the effects of natural hazards, especially on civil infrastructure.
Assessment of Vulnerability to Natural Hazards covers the vulnerability of human and environmental systems to climate change and eight natural hazards: earthquakes, floods, landslides, avalanches, forest fires, drought, coastal erosion, and heat waves. This book is an important contribution to the field, clarifying terms and investigating the nature of vulnerability to hazards in general and in various specific European contexts. In addition, this book helps improve understanding of vulnerability and gives thorough methodologies for investigating situations in which people and their environments are vulnerable to hazards. With case studies taken from across Europe, the underlying theoretical frame is transferrable to other geographical contexts, making the content relevant worldwide. - Provides a framework of theory and methodology designed to help researchers and practitioners understand the phenomenon of vulnerability to natural hazards and disasters and to climate change - Contains case studies that illustrate how to apply the methodology in different ways to diverse hazards in varied settings (rural, urban, coastal, mountain, and more) - Describes how to validate the results of methodology application in different situations and how to respond to the needs of diverse groups of stakeholders represented by the public and private sectors, civil society, researchers, and academics
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists. Read an interview with the editors to find out more: https://eos.org/editors-vox/reducing-uncertainty-in-hazard-prediction
This synthesis summarizes the findings of the Global Natural Disaster Risk Hotspots project. The Hotspots project generated a global disaster risk assessment and a set of more localized or hazard-specific case studies. The synthesis draws primarily from the results of the global assessment. Full details on the data, methods and results of the global analysis can be found in volume one of Natural Disaster Hotspots: A Global Risk Analysis. The case studies are contained in volume two (forthcoming).
Natech Risk Assessment and Management: Reducing the Risk of Natural-Hazard Impact on Hazardous Installations covers the entire spectrum of issues pertinent to Natech risk assessment and management. After a thorough introduction of the topic that includes definitions of terms, authors Krausmann, Cruz, and Salzano discuss various examples of international frameworks and provide a detailed view of the implementation of Natech Risk Management in the EU and OECD. There is a dedicated chapter on natural-hazard prediction and measurement from an engineering perspective, as well as a consideration of the impact of climate change on Natech risk. The authors also discuss selected Natech accidents, including recent examples, and provide specific 'lessons learned' from each, as well as an analysis of all essential elements of Natech risk assessment, such as plant layout, substance hazards, and equipment vulnerability. The final section of the book is dedicated to the reduction of Natech risk, including structural and organizational prevention and mitigation measures, as well as early warning issues and emergency foreword planning. - Teaches chemical engineers and safety managers how to safeguard chemical processing plants and pipelines against natural disasters - Includes international regulations and explains how to conduct a natural hazards risk assessment, both of which are supported by examples and case studies - Discusses a broad range of hazards and the multidisciplinary aspects of risk assessment in a detailed and accessible style
In the Earth Sciences, the concept of fractals and scale invariance is well-recognized in many natural objects. However, the use of fractals for spatial and temporal analyses of natural hazards has been less used (and accepted) in the Earth Sciences. This book brings together twelve contributions that emphasize the role of fractal analyses in natural hazard research, including landslides, wildfires, floods, catastrophic rock fractures and earthquakes. A wide variety of spatial and temporal fractal-related approaches and techniques are applied to 'natural' data, experimental data, and computer simulations. These approaches include probabilistic hazard analysis, cellular-automata models, spatial analyses, temporal variability, prediction, and self-organizing behaviour. The main aims of this volume are to present current research on fractal analyses as applied to natural hazards, and to stimulate the curiosity of advanced Earth Science students and researchers in the use of fractals analyses for the better understanding of natural hazards.
This richly illustrated book describes statistical extreme value theory for the quantification of natural hazards, such as strong winds, floods and rainfall, and discusses an interdisciplinary approach to allow the theoretical methods to be applied. The approach consists of a number of steps: data selection and correction, non-stationary theory (to account for trends due to climate change), and selecting appropriate estimation techniques based on both decision-theoretic features (e.g., Bayesian theory), empirical robustness and a valid treatment of uncertainties. It also examines and critically reviews alternative approaches based on stochastic and dynamic numerical models, as well as recently emerging data analysis issues and presents large-scale, multidisciplinary, state-of-the-art case studies. Intended for all those with a basic knowledge of statistical methods interested in the quantification of natural hazards, the book is also a valuable resource for engineers conducting risk analyses in collaboration with scientists from other fields (such as hydrologists, meteorologists, climatologists).
The events of September 11, 2001 changed perceptions, rearranged national priorities, and produced significant new government entities, including the U.S. Department of Homeland Security (DHS) created in 2003. While the principal mission of DHS is to lead efforts to secure the nation against those forces that wish to do harm, the department also has responsibilities in regard to preparation for and response to other hazards and disasters, such as floods, earthquakes, and other "natural" disasters. Whether in the context of preparedness, response or recovery from terrorism, illegal entry to the country, or natural disasters, DHS is committed to processes and methods that feature risk assessment as a critical component for making better-informed decisions. Review of the Department of Homeland Security's Approach to Risk Analysis explores how DHS is building its capabilities in risk analysis to inform decision making. The department uses risk analysis to inform decisions ranging from high-level policy choices to fine-scale protocols that guide the minute-by-minute actions of DHS employees. Although DHS is responsible for mitigating a range of threats, natural disasters, and pandemics, its risk analysis efforts are weighted heavily toward terrorism. In addition to assessing the capability of DHS risk analysis methods to support decision-making, the book evaluates the quality of the current approach to estimating risk and discusses how to improve current risk analysis procedures. Review of the Department of Homeland Security's Approach to Risk Analysis recommends that DHS continue to build its integrated risk management framework. It also suggests that the department improve the way models are developed and used and follow time-tested scientific practices, among other recommendations.