Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. The Handbook of Research on Tribology in Coatings and Surface Treatment evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
This second edition of Handbook of Micro/Nanotribology addresses the rapid evolution within this field, serving as a reference for the novice and the expert alike. Two parts divide this handbook: Part I covers basic studies, and Part II addresses design, construction, and applications to magnetic storage devices and MEMS. Discussions include: surface physics and methods for physically and chemically characterizing solid surfaces roughness characterization and static contact models using fractal analysis sliding at the interface and friction on an atomic scale scratching and wear as a result of sliding nanofabrication/nanomachining as well as nano/picoindentation lubricants for minimizing friction and wear surface forces and microrheology of thin liquid films measurement of nanomechanical properties of surfaces and thin films atomic-scale simulations of interfacial phenomena micro/nanotribology and micro/nanomechanics of magnetic storage devices This comprehensive book contains 16 chapters contributed by more than 20 international researchers. In each chapter, the presentation starts with macroconcepts and then lead to microconcepts. With more than 500 illustrations and 50 tables, Handbook of Micro/Nanotribology covers the range of relevant topics, including characterization of solid surfaces, measurement techniques and applications, and theoretical modeling of interfaces. What's New in the Second Edition? New chapters on: AFM instrumentation Surface forces and adhesion Design and construction of magnetic storage devices Microdynamical devices and systems Mechanical properties of materials in microstructure Micro/nanotribology and micro/nanomechanics of MEMS devices
The technology involved in lubrication by nanoparticles is a rapidly developing scientific area and one that has been watched with interest for the past ten years. Nanolubrication offers a solution to many problems associated with traditional lubricants that contain sulphur and phosphorus; and though for some time the production of nanoparticles was restricted by the technologies available, today synthesis methods have been improved to such a level that it is possible to produce large quantities relatively cheaply and efficiently. Nanolubricants develops a new concept of lubrication, based on these nanoparticles, and along with the authors’ own research it synthesises the information available on the topic of nanolubrication from existing literature and presents it in a concise form. Describes the many advantages and potential applications of nanotechnology in the tribological field. Offers a full review of the state-of-the-art as well as much original research that is yet unpublished. Includes sections on boundary lubrication by colloïdal systems, nanolubricants made of metal dichalcogenides, carbon-based nanolubricants, overbased detergent salts, nanolubricants made of metals and boron-based solid nanolubricants and lubrication additives. Authored by highly regarded experts in the field with contributions from leading international academics. Nanolubricants will appeal to postgraduate students, academics and researchers in mechanical engineering, chemical engineering and materials science. It should also be of interest to practising engineers with petroleum companies and mechanical manufacturers.
This title is designed to provide a clear and comprehensive overview of tribology. The book introduces the notion of a surface in tribology where a solid surface is described from topographical, structural, mechanical, and energetic perspectives. It also describes the principal techniques used to characterize and analyze surfaces. The title then discusses what may be called the fundamentals of tribology by introducing and describing the concepts of adhesion, friction, wear, and lubrication. The book focuses on the materials used in tribology, introducing the major classes of materials used, either in their bulk states or as coatings, including both protective layers and other coatings used for decorative purposes. Of especial importance to the tribology community are sections that provide the latest information on Nanotribology, Wear, Lubrication, and Wear-Corrosion: Tribocorrosion and Erosion-Corrosion.
Document from the year 2018 in the subject Engineering - General, grade: A, Srinivas School of Engineering (Srinivas Institute of Technology), course: Engineering, language: English, abstract: The main aim of this text book is to understand the applications of nano technology in mechanical engineering & the mechanics of nanomaterials and also to understand the concept of nano tribology & fracture mechanics and advancement in nano materials. At the end of the study student can able to understan: - Applications of nano materials in mechanical engineering; - Mechanics of nano materials; - Defects in nano structures; - Failure modes; - Mechanical behaviors of nano materials; - Fracture of nano structures; - Advancements in nano materials.
Written by three leading experts in the field, this textbook describes and explains all aspects of the scanning probe microscopy. Emphasis is placed on the experimental design and procedures required to optimize the performance of the various methods. Scanning Probe Microscopy covers not only the physical principles behind scanning probe microscopy but also questions of instrumental designs, basic features of the different imaging modes, and recurring artifacts. The intention is to provide a general textbook for all types of classes that address scanning probe microscopy. Third year undergraduates and beyond should be able to use it for self-study or as textbook to accompany a course on probe microscopy. Furthermore, it will be valuable as reference book in any scanning probe microscopy laboratory. Novel applications and the latest important results are also presented, and the book closes with a look at the future prospects of scanning probe microscopy, also discussing related techniques in nanoscience. Ideally suited as an introduction for graduate students, the book will also serve as a valuable reference for practising researchers developing and using scanning probe techniques.
The recent emergence and proliferation of proximal probes, e.g. SPM and AFM, and computational techniques for simulating tip-surface interactions has enabled the systematic investigation of interfacial problems on ever smaller scales, as well as created means for modifying and manipulating nanostructures. In short, they have led to the appearance of the new, interdisciplinary fields of micro/nanotribology and micro/nanomechanics. This volume serves as a timely, practical introduction to the principles of nanotribology and nanomechanics and applications to magnetic storage systems and MEMS/NEMS. Assuming some familiarity with macrotribology/mechanics, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts. After reviewing the fundamental experimental and theoretical aspects in the first part, Nanotribology and Nanomechanics then treats applications. Three groups of readers are likely to find this text valuable: graduate students, research workers, and practicing engineers. It can serve as the basis for a comprehensive, one- or two-semester course in scanning probe microscopy; applied scanning probe techniques; or nanotribology/nanomechanics/nanotechnology, in departments such as mechanical engineering, materials science, and applied physics. With a Foreword by Physics Nobel Laureate Gerd Binnig Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Department of Mechanical Engineering, Graduate Research Faculty Advisor in the Department of Materials Science and Engineering, and the Director of the Nanotribology Laboratory for Information Storage & MEMS/NEMS (NLIM) at the Ohio State University, Columbus, Ohio. He is an internationally recognized expert of tribology and mechanics on the macro- to nanoscales, and is one of the most prolific authors. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices and a leading researcher in the fields of nanotribology and nanomechanics using scanning probe microscopy and applications to micro/nanotechnology. He is the recipient of various international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award.
Superlubricity is defined as a sliding regime in which friction or resistance to sliding vanishes. It has been shown that energy can be conserved by further reducing/removing friction in moving mechanical systems and this book includes contributions from world-renowned scientists who address some of the most fundamental research issues in overcoming friction. Superlubricity reviews the latest methods and materials in this area of research that are aimed at removing friction in nano-to-micro scale machines and large scale engineering components. Insight is also given into the atomic-scale origins of friction in general and superlubricity while other chapters focus on experimental and practical aspects or impacts of superlubricity that will be very useful for broader industrial community.* Reviews the latest fundamental research in superlubricity today* Presents 'state-of-the-art' methods, materials, and experimental techniques* Latest developments in tribomaterials, coatings, and lubricants providing superlubricity