The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Nanotechnology General Session¿, held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿General Student Poster Session¿, held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Solid-State Topics General Session¿, held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.
Designed for students, young managers and seasoned practitioners alike, this handbook explains the nuts and bolts of the modern logistics and distribution world in plain language. Illustrated throughout, this second edition includes new chapters on areas previously not covered, such as: intermodal transport; benchmarking; environmental matters; and vehicle and depot security.
This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.
In many instances of mechanical interaction between two materials, the physical contact affects only the outermost surface layer, with little discernible influence on the bulk of the material. The resultant high pressures in these localised regimes can induce surface structural changes such as deformation, phase transformation and amorphization.
This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.
The fundamental principle of piezotronics and piezo-phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non-central symmetry in materials, such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is for devices fabricated using the piezopotential as a “gate” voltage to control charge carrier transport at a contact or junction. The piezo-phototronic effect uses the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. The functionality offered by piezotroics and piezo-phototronics are complimentary to CMOS technology. There is an effective integration of piezotronic and piezo-phototronic devices with silicon based CMOS technology. Unique applications can be found in areas such as human-computer interfacing, sensing and actuating in nanorobotics, smart and personalized electronic signatures, smart MEMS/NEMS, nanorobotics and energy sciences. This book introduces the fundamentals of piezotronics and piezo-phototronics and advanced applications. It gives guidance to researchers, engineers and graduate students.
Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.