Design Exploration of Emerging Nano-scale Non-volatile Memory

Design Exploration of Emerging Nano-scale Non-volatile Memory

Author: Hao Yu

Publisher: Springer Science & Business

Published: 2014-04-18

Total Pages: 200

ISBN-13: 1493905511

DOWNLOAD EBOOK

This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices. Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices. Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design. • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design and hybrid NVM memory system optimization; • Provides both theoretical analysis and practical examples to illustrate design methodologies; • Illustrates design and analysis for recent developments in spin-toque-transfer, domain-wall racetrack and memristors.


Introduction to Magnetic Random-Access Memory

Introduction to Magnetic Random-Access Memory

Author: Bernard Dieny

Publisher: John Wiley & Sons

Published: 2016-11-14

Total Pages: 264

ISBN-13: 1119079357

DOWNLOAD EBOOK

Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.


Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Author: Manan Suri

Publisher: Springer

Published: 2017-01-21

Total Pages: 217

ISBN-13: 813223703X

DOWNLOAD EBOOK

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.


Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Author: Jayasimha Atulasimha

Publisher: John Wiley & Sons

Published: 2016-03-07

Total Pages: 356

ISBN-13: 1118869265

DOWNLOAD EBOOK

Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.


Spintronics-based Computing

Spintronics-based Computing

Author: Weisheng Zhao

Publisher: Springer

Published: 2015-05-11

Total Pages: 259

ISBN-13: 3319151800

DOWNLOAD EBOOK

This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content. The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.


More than Moore Technologies for Next Generation Computer Design

More than Moore Technologies for Next Generation Computer Design

Author: Rasit O. Topaloglu

Publisher: Springer

Published: 2015-02-09

Total Pages: 225

ISBN-13: 1493921630

DOWNLOAD EBOOK

This book provides a comprehensive overview of key technologies being used to address challenges raised by continued device scaling and the extending gap between memory and central processing unit performance. Authors discuss in detail what are known commonly as “More than Moore” (MtM), technologies, which add value to devices by incorporating functionalities that do not necessarily scale according to “Moore's Law”. Coverage focuses on three key technologies needed for efficient power management and cost per performance: novel memories, 3D integration and photonic on-chip interconnect.


Nanoelectronic Circuit Design

Nanoelectronic Circuit Design

Author: Niraj K. Jha

Publisher: Springer Science & Business Media

Published: 2010-12-21

Total Pages: 489

ISBN-13: 1441976094

DOWNLOAD EBOOK

This book is about large-scale electronic circuits design driven by nanotechnology, where nanotechnology is broadly defined as building circuits using nanoscale devices that are either implemented with nanomaterials (e.g., nanotubes or nanowires) or following an unconventional method (e.g., FinFET or III/V compound-based devices). These nanoscale devices have significant potential to revolutionize the fabrication and integration of electronic systems and scale beyond the perceived scaling limitations of traditional CMOS. While innovations in nanotechnology originate at the individual device level, realizing the true impact of electronic systems demands that these device-level capabilities be translated into system-level benefits. This is the first book to focus on nanoscale circuits and their design issues, bridging the existing gap between nanodevice research and nanosystem design.


Emerging Non-volatile Memory Technologies

Emerging Non-volatile Memory Technologies

Author: Wen Siang Lew

Publisher: Springer Nature

Published: 2021-01-09

Total Pages: 439

ISBN-13: 9811569126

DOWNLOAD EBOOK

This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.


Applications of Emerging Memory Technology

Applications of Emerging Memory Technology

Author: Manan Suri

Publisher: Springer

Published: 2019-07-16

Total Pages: 244

ISBN-13: 9811383790

DOWNLOAD EBOOK

The book intends to bring under one roof research work of leading groups from across the globe working on advanced applications of emerging memory technology nanodevices. The applications dealt in the text will be beyond conventional storage application of semiconductor memory devices. The text will deal with material and device physical principles that give rise to interesting characteristics and phenomena in the emerging memory device that can be exploited for a wide variety of applications. Applications covered will include system-centric cases such as – caches, NVSRAM, NVTCAM, Hybrid CMOS-RRAM circuits for: Machine Learning, In-Memory Computing, Hardware Security - RNG/PUF, Biosensing and other misc beyond storage applications. The book is envisioned for multi-purpose use as a textbook in advanced UG/PG courses and a research text for scientists working in the domain.