Nanoscale Liquid Interfaces

Nanoscale Liquid Interfaces

Author: Thierry Ondarçuhu

Publisher: CRC Press

Published: 2013-04-17

Total Pages: 782

ISBN-13: 9814316458

DOWNLOAD EBOOK

This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.


Liquid Surfaces and Interfaces

Liquid Surfaces and Interfaces

Author: Peter S. Pershan

Publisher: Cambridge University Press

Published: 2012-08-02

Total Pages: 335

ISBN-13: 0521814014

DOWNLOAD EBOOK

A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.


Nanoscale Electrochemistry

Nanoscale Electrochemistry

Author: Andrew J. Wain

Publisher: Elsevier

Published: 2021-09-14

Total Pages: 580

ISBN-13: 0128200561

DOWNLOAD EBOOK

Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid–liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years. - Outlines the major applications of nanoscale electrochemistry in energy storage, spectroscopy and biology - Summarizes the major principles of nanoscale electrochemical systems, exploring how they differ from similar system types - Discusses the major challenges of electrochemical analysis at the nanoscale


Nanoscale Probes of the Solid/Liquid Interface

Nanoscale Probes of the Solid/Liquid Interface

Author: Andrew A. Gewirth

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 340

ISBN-13: 9401584354

DOWNLOAD EBOOK

Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.


Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Author: Evgeny Smirnov

Publisher: Springer

Published: 2018-04-19

Total Pages: 270

ISBN-13: 3319779141

DOWNLOAD EBOOK

This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.


Nanoscale Interface for Organic Electronics

Nanoscale Interface for Organic Electronics

Author: Mitsumasa Iwamoto

Publisher: World Scientific

Published: 2011

Total Pages: 387

ISBN-13: 9814322482

DOWNLOAD EBOOK

This book treats the important issues of interface control in organic devices in a wide range of applications that cover from electronics, displays, and sensors to biorelated devices. This book is composed of three parts: Part 1, Nanoscale interface; Part 2, Molecular electronics; Part 3, Polymer electronics.


Nano-Surface Chemistry

Nano-Surface Chemistry

Author: Morton Rosoff

Publisher: CRC Press

Published: 2001-09-27

Total Pages: 872

ISBN-13: 1135570930

DOWNLOAD EBOOK

Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supra


Metal Oxide Nanoparticles, 2 Volume Set

Metal Oxide Nanoparticles, 2 Volume Set

Author: Oliver Diwald

Publisher: John Wiley & Sons

Published: 2021-09-14

Total Pages: 903

ISBN-13: 1119436745

DOWNLOAD EBOOK

Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.


Nanoscience with Liquid Crystals

Nanoscience with Liquid Crystals

Author: Quan Li

Publisher: Springer Science & Business

Published: 2014-04-17

Total Pages: 431

ISBN-13: 3319048678

DOWNLOAD EBOOK

This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active players, are compiled to make the book a reference book. Readers will find the book useful and of benefit both as summaries for works in this field and as tutorials and explanations of concepts for those just entering the field. Additionally, the book helps to stimulate future developments.