The book Nanopharmaceuticals in regenerative medicine is a collective and comprehensive volume of the latest innovations in nanoscience technology for practical use in clinical, biomedicine and diagnostic arena. The term nanotechnology pops up in every segment of modern-day life. The primary aim of this book is to deliver the precise information to students, educators, technologists and researchers. A conglomerate of scientists from various research fields contributed to the chapters, giving detailed descriptions on the most recent developments of nanotechnology in the area of disease management. This book will also be useful for industrial research and development partners, start-up entrepreneurs, government policy makers and other professionals who are interested in nanomedicines. Chapter 8 of this book is freely available as a downloadable Open Access PDF at Nanopharmaceuticals in Regenerative Medicine | Harishkumar Madhyastha, (taylorfrancis.com) under a Creative Commons CC-BY 4.0 license.
Nanomedicine is defined as the application of nanobiotechnology in clinical medicine, which is currently being used to research the pathomechanism of disease, refine molecular diagnostics, and aid in the discovery, development, and delivery of drugs. In The Handbook of Nanomedicine, Third Edition, Prof. Kewal K. Jain updates, reorganizes, and replaces information in the comprehensive second edition in order to capture the most recent advances in this dynamic field. Important components of nanomedicine such as drug delivery via nanobiotechnology and nanopharmaceuticals as well as nanooncology, where the greatest number of advances are occurring, are covered extensively. As this text is aimed at nonmedical scientists, pharmaceutical personnel, as well as physicians, descriptions of the technology involved and other medical terminology are kept as clear and simple as possible. In depth and cutting-edge, The Handbook of Nanomedicine, Third Edition informs its readers of the ever-growing field of nanomedicine, destined to play a significant role in the future of healthcare.
NANOTECHNOLOGY IN MEDICINE Discover thorough insights into the toxicology of nanomaterials used in medicine In Nanotechnology in Medicine: Toxicity and Safety, an expert team of nanotechnologists delivers a robust and up-to-date review of current and future applications of nanotechnology in medicine with a special focus on neurodegenerative diseases, cancer, diagnostics, nano-nutraceuticals, dermatology, and gene therapy. The editors offer resources that address nanomaterial safety, which tends to be the greatest hurdle to obtaining the benefits of nanomedicine in healthcare. The book is a one-stop resource for recent and comprehensive information on the toxico logical and safety aspects of nanotechnology used in human health and medicine. It provides readers with cutting-edge techniques for delivering therapeutic agents into targeted cellular compartments, cells, tissues, and organs by using nanoparticulate carriers. The book also offers methodological considerations for toxicity, safety, and risk assessment. Nanotechnology in Medicine: Toxicity and Safety also provides readers with: A thorough introduction to the nanotoxicological aspects of nanomedicine, including translational nanomedicine and nanomedicine personalization Comprehensive introductions to nanoparticle toxicity and safety, including selenium nanoparticles and metallic nanoparticles Practical discussions of nanotoxicology and drug delivery, including gene delivery using nanocarriers and the use of nanomaterials for ocular delivery applications In-depth examinations of nanotechnology ethics and the regulatory framework of nanotechnology and medicine Perfect for researchers, post-doctoral candidates, and specialists in the fields of nanotechnology, nanomaterials, and nanocarriers, Nanotechnology in Medicine: Toxicity and Safety will also prove to be an indispensable part of the libraries of nanoengineering, nanomedicine, and biopharmaceutical professionals and nanobiotechnologists.
This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.
Nanoscience in Dermatology covers one of the two fastest growing areas within dermatological science, nanoscience and nanotechnology in dermatology. Recently, great progress has been made in the research and development of nanotechnologies and nanomaterials related to various applications in medicine and, in general, the life sciences. There is increasing enthusiasm for nanotechnology applications in dermatology (drug delivery, diagnostics, therapeutics, imaging, sensors, etc.) for understanding skin biology, improving early detection and treatment of skin diseases, and in the design and optimization of cosmetics. Light sensitive nanoparticles have recently been explored, opening a new era for the combined applications of light with nanotechnology, also called photonanodermatology. However, concerns have been raised regarding the adverse effects of intentional and unintentional nanoparticle exposure and their toxicity. Written by experts working in these exciting fields, this book extensively covers nanotechnology applications, together with the fundamentals and toxicity aspects. It not only addresses current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing scientists and dermatologists with a clear understanding of the advantages and challenges of nanotechnology in skin medicine. - Provides knowledge of current and future applications of nanoscience and nanotechnology in dermatology - Outlines the fundamentals, methods, toxicity aspects, and other relevant aspects for nanotechnology based applications in dermatology - Coherently structured book written by experts working in the fields covered
Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.
Interest in the application of nanotechnology to medicine has surged in recent years and could transform the way we diagnose, treat and prevent diseases such as cancer. However, the clinical success of nanomedicine is limited because of problems with toxicity and therapeutic efficacy. To overcome this it is essential to produce new nanosystems with specific functions, which can be achieved by designing new polymers with particular properties that can be used for nanomedicine. Functional Polymers for Nanomedicine provides a complete overview of the different strategies for designing polymers for nanomedicine applications. The first part of the book looks at the current problems and direction in nanomedicine including a review of current design and targeting of nanocarriers. The second part explores the design of polymers with different functions including hyperbranched polymers, polymersomes, polysaccharides, polymeric micelles and zwitterionic polymers and their applications in gene therapy and drug delivery. This timely book is edited by a leading scientist in nanomedicine and provides a suitable introduction and reference source for advanced undergraduates, postgraduates and academic and industrial researchers in polymer science, nanotechnology and pharmacy interested in materials for medical applications.
A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.
Unique in combining the expertise of practitioners from university hospitals and that of academic researchers, this timely monograph presents selected topics catering specifically to the needs and interests of natural scientists and engineers as well as physicians who are concerned with developing nanotechnology-based treatments to improve human health. To this end, the book cover the materials aspects of nanomedicine, such as the hierarchical structure of biological materials, the imaging of hard and soft tissues and, in particular, concrete examples of nanotechnology-based approaches in modern medical treatments. The whole is rounded off by a discussion of the opportunities and risks of using nanotechnology and nanomaterials in medicine, backed by case studies taken from real life.
Nano-carriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery presents recent discoveries in research on the pharmaceutical applications of the various types of nanosystem-based drug delivery systems. As many nanosystems have reached the market over the past decade, this book proves their benefits to patients. It explores these new carriers and the advances in drug delivery they have facilitated. Reflecting the interdisciplinary nature of the subject matter, the book includes experts from different fields, and with various backgrounds and expertise. It will appeal to researchers and students from different disciplines, such as materials science, technology and various biomedical fields. Coverage includes industrial applications that bridge the gap between lab-based research and practical industrial use. The resulting work is a reference and practical source of guidance for researchers, students and scientists working in the fields of nanotechnology, materials science and technology and biomedical science.