This text addresses the question, How does the sodium pump pump'. A variety of primary structure information is available, and progress has been made in the functional characterization of the Na, K-pump, making the answer to this question possible, within reach of currently used techniques
Basic Neurochemistry, Eighth Edition, is the updated version of the outstanding and comprehensive classic text on neurochemistry. For more than forty years, this text has been the worldwide standard for information on the biochemistry of the nervous system, serving as a resource for postgraduate trainees and teachers in neurology, psychiatry, and basic neuroscience, as well as for medical, graduate, and postgraduate students and instructors in the neurosciences. The text has evolved, as intended, with the science. This new edition continues to cover the basics of neurochemistry as in the earlier editions, along with expanded and additional coverage of new research from intracellular trafficking, stem cells, adult neurogenesis, regeneration, and lipid messengers. It contains expanded coverage of all major neurodegenerative and psychiatric disorders, including the neurochemistry of addiction, pain, and hearing and balance; the neurobiology of learning and memory; sleep; myelin structure, development, and disease; autism; and neuroimmunology. - Completely updated text with new authors and material, and many entirely new chapters - Over 400 fully revised figures in splendid color - 61 chapters covering the range of cellular, molecular and medical neuroscience - Translational science boxes emphasizing the connections between basic and clinical neuroscience - Companion website at http://elsevierdirect.com/companions/9780123749475
The sodium of animal cell membranes converts the chemical energy obtained from the hydrolysis of adenosine 5' -triphosphate into a movement of the cations Na + and K + against an electrochemical gradient. The gradient is used subse quently as an energy source to drive the uptake of metabolic substrates in polar epithelial cells and to use it for purposes of communications in excitable cells. The biological importance of the sodium pump is evident from the fact that be tween 20-70% of the cell's metabolic energy is consumed for the pumping pro cess. Moreover, the sodium pump is an important biological system involved in regulatory processes like the maintenance of the cells' and organism's water me tabolism. It is therefore understandable that special cellular demands are han dled better by special isoforms of the sodium pump, that the expression of the sodium pump and their isoforms is regulated by hormones as is the activity of the sodium pump via hormone-regulated protein kinases. Additionally, the sodium pump itself seems to be a receptor for a putative new group of hormones, the endogenous digitalis-like substances, which still have to be defined in most cases in their structure. This group of substances has its chemically well known coun terpart in steroids from plant and toad origin which are generally known as "car diac glycosides". They are in medical use since at least 200 years in medicine in the treatment of heart diseases.
This text focuses on research on the structure, molecular mechanisms, physiological regulation, and involvement in disease of Na, K-ATPase and other members of the family of cation pumps. Prominent members of this family include gastric H, K-ATPase, Ca-ATPase of sarcoplasmic and endoplasmic reticulum, plasma membrane Ca-ATPase, and plasma membrane of H-ATPase of fungi and higher plants, as well as heavy metal pumps. The volume includes details of the first high-resolution structure ever obtained of a P-type pump, the sarcoplasmic reticulum Ca-ATPase; this structure has great predictive power relative to all P-type pumps. There are 50 papers and 97 poster papers altogethe
In 1996 the 75th anniversary of the discovery of insulin was celebrated at the University of Toronto, the scene of that discovery in 1921. This volume was stimulated by the scientific program which was staged at that time and brought together much of the world's best talent to discuss and analyze the most recent developments in our understanding of pancreatic function, insulin secretion, the interaction of insulin with its target tissues, the mechanism of insulin action at the cellular level, and the defects which underlie both Type I (insulin-dependent diabetes mellitus, IDDM) and Type II (noninsulin-dependent diabetes mellitus, NIDDM) forms of the disease. We have chosen to focus the present volume on work related to insulin action.
Electrogenic ion pumps convert chemical, reduction-oxidation, or light energy- into ion concentration differences across all living cells. They are the engines that run cells. In this text, Dr Lunger develops the principles of physical chemistry required to understand the functions of these macromolecules.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References