Provides a theoretical foundation as well as practical tools for the analysis of multivariate data, using case studies and MINITAB computer macros to illustrate basic and advanced quality control methods. This work offers an approach to quality control that relies on statistical tolerance regions, and discusses computer graphic analysis highlightin
Detailed coverage of the practical aspects of multivariate statistical process control (MVSPC) based on the application of Hotelling's T2 statistic. MVSPC is the application of multivariate statistical techniques to improve the quality and productivity of an industrial process. Provides valuable insight into the T2 statistic.
The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.
The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many of the articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with the Association for Computer Machinery (ACM).
An Introduction to Acceptance Sampling and SPC with R is an introduction to statistical methods used in monitoring, controlling and improving quality. Topics covered include acceptance sampling; Shewhart control charts for Phase I studies; graphical and statistical tools for discovering and eliminating the cause of out-of-control-conditions; Cusum and EWMA control charts for Phase II process monitoring; and the design and analysis of experiments for process troubleshooting and discovering ways to improve process output. Origins of statistical quality control and the technical topics presented in the remainder of the book are those recommended in the ANSI/ASQ/ISO guidelines and standards for industry. The final chapter ties everything together by discussing modern management philosophies that encourage the use of the technical methods presented earlier. In the modern world sampling plans and the statistical calculations used in statistical quality control are done with the help of computers. As an open source high-level programming language with flexible graphical output options, R runs on Windows, Mac and Linux operating systems, and has add-on packages that equal or exceed the capability of commercial software for statistical methods used in quality control. In this book, we will focus on several R packages. In addition to demonstrating how to use R for acceptance sampling and control charts, this book will concentrate on how the use of these specific tools can lead to quality improvements both within a company and within their supplier companies. This would be a suitable book for a one-semester undergraduate course emphasizing statistical quality control for engineering majors (such as manufacturing engineering or industrial engineering), or a supplemental text for a graduate engineering course that included quality control topics.
Control charts are widely used in industry to monitor processes that are far from Zero-Defect (ZD), and their use in a near Zero-Defect manufacturing environment poses many problems. This book presents techniques of using control charts for high-quality processes, and some recent findings and applications of statistical control chart techniques for ZD processes are presented. A powerful technique based on counting of the cumulative conforming (CCC) items between two nonconforming ones is discussed in detail. Extensions of the CCC chart are described, as well as applications of cumulative sum and exponentially weighted moving average techniques to CCC-related data, multivariate methods, economic design of control chart procedures, and modeling and analysis of trended but regularly adjusted processes. Many examples, charts, and procedures, are presented throughout the book, and references are provided for those interested in exploring the details. A number of questions and issues are posed for further investigations. Researchers and students may find many ideas in this book useful in their academic work, as a foundation is laid for the exploration of many further theoretical and practical issues.
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
This book presents the outcomes of the International Conference on Intelligent Manufacturing and Automation (ICIMA 2018) organized by the Departments of Mechanical Engineering and Production Engineering at Dwarkadas J. Sanghvi College of Engineering, Mumbai, and the Indian Society of Manufacturing Engineers. It includes original research and the latest advances in the field, focusing on automation, mechatronics and robotics; CAD/CAM/CAE/CIM/FMS in manufacturing; product design and development; DFM/DFA/FMEA; MEMS and Nanotechnology; rapid prototyping; computational techniques; industrial engineering; manufacturing process management; modelling and optimization techniques; CRM, MRP and ERP; green, lean, agile and sustainable manufacturing; logistics and supply chain management; quality assurance and environment protection; advanced material processing and characterization; and composite and smart materials.
The normal or bell curve distribution is far more common in statistics textbooks than it is in real factories, where processes follow non-normal and often highly skewed distributions. Statistical Process Control for Real-World Applications shows how to handle non-normal applications scientifically and explain the methodology to suppliers and custom
Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come