Multivariate Discrete q-Distributions

Multivariate Discrete q-Distributions

Author: Charalambos A. Charalambides

Publisher: Springer Nature

Published: 2023-12-24

Total Pages: 134

ISBN-13: 3031437136

DOWNLOAD EBOOK

This book is devoted to the study of multivariate discrete q-distributions, which is greatly facilitated by existing multivariate q-sequences and q-functions. Classical multivariate discrete distributions are defined on a sequence of independent and identically distributed Bernoulli trials, with either being a success of a certain rank (level) or a failure. The author relaxes the assumption that the probability of success of a trial is constant by assuming that it varies geometrically with the number of trials and/or the number of successes. The latter is advantageous in the sense that it permits incorporating the experience gained from the previous trials and/or successes, which leads to multivariate discrete q-distributions. Furthermore, q-multinomial and negative q-multinomial formulae are obtained. Next, the book addresses q-multinomial and negative q-multinomial distributions of the first and second kind. The author also examines multiple q-Polya urn model, multivariate q-Polya and inverse q-Polya distributions. Presents definitions and theorems that highlight key concepts and worked examples to illustrate the various applications Contains numerous exercises at varying levels of difficulty that consolidate the presented concepts and results Includes hints and answers to all exercises via the appendix and is supplemented with an Instructor's Solution Manual


Discrete q-Distributions

Discrete q-Distributions

Author: Charalambos A. Charalambides

Publisher: John Wiley & Sons

Published: 2016-03-16

Total Pages: 264

ISBN-13: 1119119057

DOWNLOAD EBOOK

A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.


Univariate Discrete Distributions

Univariate Discrete Distributions

Author: Norman L. Johnson

Publisher: John Wiley & Sons

Published: 2005-10-03

Total Pages: 676

ISBN-13: 0471715808

DOWNLOAD EBOOK

This Set Contains: Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discover the latest advances in discrete distributions theory The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method. A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions. Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including: Families of discrete distributions Binomial distribution Poisson distribution Negative binomial distribution Hypergeometric distributions Logarithmic and Lagrangian distributions Mixture distributions Stopped-sum distributions Matching, occupancy, runs, and q-series distributions Parametric regression models and miscellanea Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications. With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.


Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications

Author: George E. Andrews

Publisher: Springer

Published: 2019-03-02

Total Pages: 443

ISBN-13: 3030111024

DOWNLOAD EBOOK

The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.


Bayesian Ideas and Data Analysis

Bayesian Ideas and Data Analysis

Author: Ronald Christensen

Publisher: CRC Press

Published: 2011-07-07

Total Pages: 518

ISBN-13: 1439803552

DOWNLOAD EBOOK

Emphasizing the use of WinBUGS and R to analyze real data, Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians presents statistical tools to address scientific questions. It highlights foundational issues in statistics, the importance of making accurate predictions, and the need for scientists and statisticians to collaborate in analyzing data. The WinBUGS code provided offers a convenient platform to model and analyze a wide range of data. The first five chapters of the book contain core material that spans basic Bayesian ideas, calculations, and inference, including modeling one and two sample data from traditional sampling models. The text then covers Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) simulation. After discussing linear structures in regression, it presents binomial regression, normal regression, analysis of variance, and Poisson regression, before extending these methods to handle correlated data. The authors also examine survival analysis and binary diagnostic testing. A complementary chapter on diagnostic testing for continuous outcomes is available on the book’s website. The last chapter on nonparametric inference explores density estimation and flexible regression modeling of mean functions. The appropriate statistical analysis of data involves a collaborative effort between scientists and statisticians. Exemplifying this approach, Bayesian Ideas and Data Analysis focuses on the necessary tools and concepts for modeling and analyzing scientific data. Data sets and codes are provided on a supplemental website.


Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning

Author: David Barber

Publisher: Cambridge University Press

Published: 2012-02-02

Total Pages: 739

ISBN-13: 0521518148

DOWNLOAD EBOOK

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.


An Introduction to Discrete-Valued Time Series

An Introduction to Discrete-Valued Time Series

Author: Christian H. Weiss

Publisher: John Wiley & Sons

Published: 2018-02-05

Total Pages: 300

ISBN-13: 1119096960

DOWNLOAD EBOOK

A much-needed introduction to the field of discrete-valued time series, with a focus on count-data time series Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. Classic approaches like ARMA models and the Box-Jenkins program are also featured with the basics of these approaches summarized in an Appendix. In addition, data examples, with all relevant R code, are available on a companion website. Provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series Covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties Addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples Covers classical approaches such as ARMA models, Box-Jenkins program and how to generate functions Includes dataset examples with all necessary R code provided on a companion website An Introduction to Discrete-Valued Time Series is a valuable working resource for researchers and practitioners in a broad range of fields, including statistics, data science, machine learning, and engineering. It will also be of interest to postgraduate students in statistics, mathematics and economics.


Probability Distributions Used in Reliability Engineering

Probability Distributions Used in Reliability Engineering

Author: Andrew N O'Connor

Publisher: RIAC

Published: 2011

Total Pages: 220

ISBN-13: 1933904062

DOWNLOAD EBOOK

The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.


Case Studies in Bayesian Statistical Modelling and Analysis

Case Studies in Bayesian Statistical Modelling and Analysis

Author: Clair L. Alston

Publisher: John Wiley & Sons

Published: 2012-10-10

Total Pages: 411

ISBN-13: 1118394321

DOWNLOAD EBOOK

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.