The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.
Algorithms play a central role both in the theory and in the practice of computing. The goal of the authors was to write a textbook that would not trivialize the subject but would still be readable by most students on their own. The book contains over 120 exercises. Some of them are drills; others make important points about the material covered in the text or introduce new algorithms not covered there. The book also provides programming projects. From the Table of Contents: Chapter 1: Basic knowledge of Mathematics, Relations, Recurrence relation and Solution techniques, Function and Growth of functions. Chapter 2: Different Sorting Techniques and their analysis. Chapter 3: Greedy approach, Dynamic Programming, Brach and Bound techniques, Backtracking and Problems, Amortized analysis, and Order Statics. Chapter 4: Graph algorithms, BFS, DFS, Spanning Tree, Flow Maximization Algorithms. Shortest Path Algorithms. Chapter 5: Binary search tree, Red black Tree, Binomial heap, B-Tree and Fibonacci Heap. Chapter 6: Approximation Algorithms, Sorting Networks, Matrix operations, Fast Fourier Transformation, Number theoretic Algorithm, Computational geometry Randomized Algorithms, String matching, NP-Hard, NP-Completeness, Cooks theorem.
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Multivariate problems occur in many applications. These problems are defined on spaces of $d$-variate functions and $d$ can be huge--in the hundreds or even in the thousands. Some high-dimensional problems can be solved efficiently to within $\varepsilon$, i.e., the cost increases polynomially in $\varepsilon^{-1}$ and $d$. However, there are many multivariate problems for which even the minimal cost increases exponentially in $d$. This exponential dependence on $d$ is called intractability or the curse of dimensionality. This is the first volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. It is devoted to tractability in the case of algorithms using linear information and develops the theory for multivariate problems in various settings: worst case, average case, randomized and probabilistic. A problem is tractable if its minimal cost is not exponential in $\varepsilon^{-1}$ and $d$. There are various notions of tractability, depending on how we measure the lack of exponential dependence. For example, a problem is polynomially tractable if its minimal cost is polynomial in $\varepsilon^{-1}$ and $d$. The study of tractability was initiated about 15 years ago. This is the first and only research monograph on this subject. Many multivariate problems suffer from the curse of dimensionality when they are defined over classical (unweighted) spaces. In this case, all variables and groups of variables play the same role, which causes the minimal cost to be exponential in $d$. But many practically important problems are solved today for huge $d$ in a reasonable time. One of the most intriguing challenges of the theory is to understand why this is possible. Multivariate problems may become weakly tractable, polynomially tractable or even strongly polynomially tractable if they are defined over weighted spaces with properly decaying weights. One of the main purposes of this book is to study weighted spaces and obtain necessary and sufficient conditions on weights for various notions of tractability. The book is of interest for researchers working in computational mathematics, especially in approximation of high-dimensional problems. It may be also suitable for graduate courses and seminars. The text concludes with a list of thirty open problems that can be good candidates for future tractability research.
This is the second volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. The second volume deals with algorithms using standard information consisting of function values for the approximation of linear and selected nonlinear functionals. An important example is numerical multivariate integration. The proof techniques used in volumes I and II are quite different. It is especially hard to establish meaningful lower error bounds for the approximation of functionals by using finitely many function values. Here, the concept of decomposable reproducing kernels is helpful, allowing it to find matching lower and upper error bounds for some linear functionals. It is then possible to conclude tractability results from such error bounds. Tractability results, even for linear functionals, are very rich in variety. There are infinite-dimensional Hilbert spaces for which the approximation with an arbitrarily small error of all linear functionals requires only one function value. There are Hilbert spaces for which all nontrivial linear functionals suffer from the curse of dimensionality. This holds for unweighted spaces, where the role of all variables and groups of variables is the same. For weighted spaces one can monitor the role of all variables and groups of variables. Necessary and sufficient conditions on the decay of the weights are given to obtain various notions of tractability. The text contains extensive chapters on discrepancy and integration, decomposable kernels and lower bounds, the Smolyak/sparse grid algorithms, lattice rules and the CBC (component-by-component) algorithms. This is done in various settings. Path integration and quantum computation are also discussed. This volume is of interest to researchers working in computational mathematics, especially in approximation of high-dimensional problems. It is also well suited for graduate courses and seminars. There are 61 open problems listed to stimulate future research in tractability.
This volume presents the revised papers of the 14th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2020, which took place online during August 10-14, 2020. This book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in statistics, machine learning, finance, and computer graphics, offering information on the latest developments in Monte Carlo and quasi-Monte Carlo methods and their randomized versions.
This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.
An excellent series presenting top lecturers from the best institute for complex systems. Topics covered include: stochastic processes; fluid flow; pattern formation; information-based complexity; motor system problems; and the nature of adaptive change.
This book provides a comprehensive treatment of information-based complexity, the branch of computational complexity that deals with the intrinsic difficulty of the approximate solution of problems for which the information is partial, noisy, and priced. Such problems arise in many areas including economics, physics, human and robotic vision, scientific and engineering computation, geophysics, decision theory, signal processing and control theory.