Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Author: Pascal Granger

Publisher: MDPI

Published: 2019-07-11

Total Pages: 214

ISBN-13: 303921179X

DOWNLOAD EBOOK

Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.


Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Author: Pascal Granger

Publisher:

Published: 2019

Total Pages: 214

ISBN-13: 9783039211807

DOWNLOAD EBOOK

Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.


Multiphase Catalytic Reactors

Multiphase Catalytic Reactors

Author: Zeynep Ilsen Önsan

Publisher: John Wiley & Sons

Published: 2016-06-09

Total Pages: 399

ISBN-13: 1119248469

DOWNLOAD EBOOK

Provides a holistic approach to multiphase catalytic reactors from their modeling and design to their applications in industrial manufacturing of chemicals Covers theoretical aspects and examples of fixed-bed, fluidized-bed, trickle-bed, slurry, monolith and microchannel reactors Includes chapters covering experimental techniques and practical guidelines for lab-scale testing of multiphase reactors Includes mathematical content focused on design equations and empirical relationships characterizing different multiphase reactor types together with an assortment of computational tools Involves detailed coverage of multiphase reactor applications such as Fischer-Tropsch synthesis, fuel processing for fuel cells, hydrotreating of oil fractions and biofuels processing


Computational Catalysis

Computational Catalysis

Author: Aravind Asthagiri

Publisher: Royal Society of Chemistry

Published: 2014

Total Pages: 277

ISBN-13: 1849734518

DOWNLOAD EBOOK

This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.


Viscous Flows

Viscous Flows

Author: Howard Brenner

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 625

ISBN-13: 1483289524

DOWNLOAD EBOOK

Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character. This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations. The range of applicability of most theoretical solutions is shown to be quite limited; however, in combination they are demonstrated to be more reliable than purely empirical expressions, particularly in novel applications.


Computational Approaches to Materials Design: Theoretical and Practical Aspects

Computational Approaches to Materials Design: Theoretical and Practical Aspects

Author: Datta, Shubhabrata

Publisher: IGI Global

Published: 2016-06-16

Total Pages: 492

ISBN-13: 1522502912

DOWNLOAD EBOOK

The development of new and superior materials is beneficial within industrial settings, as well as a topic of academic interest. By using computational modeling techniques, the probable application and performance of these materials can be easily evaluated. Computational Approaches to Materials Design: Theoretical and Practical Aspects brings together empirical research, theoretical concepts, and the various approaches in the design and discovery of new materials. Highlighting optimization tools and soft computing methods, this publication is a comprehensive collection for researchers, both in academia and in industrial settings, and practitioners who are interested in the application of computational techniques in the field of materials engineering.


Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control

Author: Benedetto Corain

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 471

ISBN-13: 0080555004

DOWNLOAD EBOOK

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control deals with the synthesis of metal nanoclusters along all known methodologies. Physical and chemical properties of metal nanoclusters relevant to their applications in chemical processing and materials science are covered thoroughly. Special attention is given to the role of metal nanoclusters size and shape in catalytic processes and catalytic applications relevant to industrial chemical processing.An excellent text for expanding the knowledge on the chemistry and physics of metal nanoclusters. Divided in two parts; Part I deals with general aspects of the matter and Part II has to be considered a useful handbook dealing with the production of metal nanoclusters, especially from their size-control point of view.* Divided into two parts for ease of reference: general and operational * Separation of synthetic aspects, physical properties and applications* Specific attention is given to the task of metal nanoclusters size-control


Renewable Synthetic Fuels and Chemicals from Carbon Dioxide

Renewable Synthetic Fuels and Chemicals from Carbon Dioxide

Author: David S.A. Simakov

Publisher: Springer

Published: 2017-07-24

Total Pages: 75

ISBN-13: 3319611127

DOWNLOAD EBOOK

This book outlines the most recent progress in the development of technologies for carbon dioxide utilization into renewable synthetic fuels and platform chemicals via chemical and biological routes. Various processes are discussed, including thermocatalytic, electrocatalytic, photocatalytic, and biological conversion. This SpringerBrief consists of four chapters, each chapter outlining fundamentals and catalytic mechanisms, and discussing main design considerations and major technological challenges, providing also a brief outline of the most recent progress. The book is useful for a broad community of academic and industrial researchers in the fields of chemical reaction engineering, electro- and photo-chemistry, and biochemical engineering, with specific emphasizes on heterogeneous catalysis, reactor design and process development.


Design of Heterogeneous Catalysts

Design of Heterogeneous Catalysts

Author: Umit S. Ozkan

Publisher: John Wiley & Sons

Published: 2009-02-11

Total Pages: 340

ISBN-13: 352762533X

DOWNLOAD EBOOK

This long-awaited reference source is the first book to focus on this important and hot topic. As such, it provides examples from a wide array of fields where catalyst design has been based on new insights and understanding, presenting such modern and important topics as self-assembly, nature-inspired catalysis, nano-scale architecture of surfaces and theoretical methods. With its inclusion of all the useful and powerful tools for the rational design of catalysts, this is a true "must have" book for every researcher in the field.


Kinetics of Chemical Processes

Kinetics of Chemical Processes

Author: Michel Boudart

Publisher: Elsevier

Published: 2014-05-16

Total Pages: 263

ISBN-13: 1483183971

DOWNLOAD EBOOK

Kinetics of Chemical Processes details the concepts associated with the kinetic study of the chemical processes. The book is comprised of 10 chapters that present information relevant to applied research. The text first covers the elementary chemical kinetics of elementary steps, and then proceeds to discussing catalysis. The next chapter tackles simplified kinetics of sequences at the steady state. Chapter 5 deals with coupled sequences in reaction networks, while Chapter 6 talks about autocatalysis and inhibition. The seventh chapter describes the irreducible transport phenomena in chemical kinetics. The next two chapters discuss the correlations in homogenous kinetics and heterogeneous catalysis, respectively. The last chapter covers the analysis of reaction networks. The book will be of great use to students, researchers, and practitioners of scientific disciplines that deal with chemical reaction, particularly chemistry and chemical engineering.