This book describes the theories, applications, and challenges for different oral controlled release formulations. This book differs from most in its focus on oral controlled release formulation design and process development. It also covers the related areas like preformulation, biopharmaceutics, in vitro-in vivo correlations (IVIVC), quality by design (QbD), and regulatory issues.
This book represents the invited presentations and some of the posters presented at the conference entitled "In Vitro-In Vivo Relationship (IVIVR) Workshop" held in Sep tember, 1996. The workshop was organized by the IVIVR Cooperative Working Group which has drawn together scientists from a number of organizations and institutions, both academic and industrial. In addition to Elan Corporation, which is a drug delivery com pany specializing in the development of ER (Extended Release) dosage forms, the IVIVR Cooperative Working Group consists of collaborators from the University of Maryland at Baltimore, University College Dublin, Trinity College Dublin, and the University of Not tingham in the UK. The principal collaborators are: Dr. Jackie Butler, Elan Corporation Prof. Owen Corrigan, Trinity College Dublin Dr. lain Cumming, Elan Corporation Dr. John Devane, Elan Corporation Dr. Adrian Dunne, University College Dublin Dr. Stuart Madden, Elan Corporation Dr. Colin Melia, University of Nottingham Mr. Tom O'Hara, Elan Corporation Dr. Deborah Piscitelli, University of Maryland at Baltimore Dr. Araz Raoof, Elan Corporation Mr. Paul Stark, Elan Corporation Dr. David Young, University of Maryland at Baltimore The purpose of the workshop was to discuss new concepts and methods in the devel opment of in vitro-in vivo relationships for ER products. The original idea went back ap proximately 15 months prior to the workshop itself. For some time, the principal collaborators had been working together on various aspects of dosage form development.
Developing Solid Oral Dosage Forms is intended for pharmaceutical professionals engaged in research and development of oral dosage forms. It covers essential principles of physical pharmacy, biopharmaceutics and industrial pharmacy as well as various aspects of state-of-the-art techniques and approaches in pharmaceutical sciences and technologies along with examples and/or case studies in product development. The objective of this book is to offer updated (or current) knowledge and skills required for rational oral product design and development. The specific goals are to provide readers with: - Basics of modern theories of physical pharmacy, biopharmaceutics and industrial pharmacy and their applications throughout the entire process of research and development of oral dosage forms - Tools and approaches of preformulation investigation, formulation/process design, characterization and scale-up in pharmaceutical sciences and technologies - New developments, challenges, trends, opportunities, intellectual property issues and regulations in solid product development - The first book (ever) that provides comprehensive and in-depth coverage of what's required for developing high quality pharmaceutical products to meet international standards - It covers a broad scope of topics that encompass the entire spectrum of solid dosage form development for the global market, including the most updated science and technologies, practice, applications, regulation, intellectual property protection and new development trends with case studies in every chapter - A strong team of more than 50 well-established authors/co-authors of diverse background, knowledge, skills and experience from industry, academia and regulatory agencies
Modeling and Control of Drug Delivery Systems provides comprehensive coverage of various drug delivery and targeting systems and their state-of-the-art related works, ranging from theory to real-world deployment and future perspectives. Various drug delivery and targeting systems have been developed to minimize drug degradation and adverse effect and increase drug bioavailability. Site-specific drug delivery may be either an active and/or passive process. Improving delivery techniques that minimize toxicity and increase efficacy offer significant potential benefits to patients and open up new markets for pharmaceutical companies. This book will attract many researchers working in DDS field as it provides an essential source of information for pharmaceutical scientists and pharmacologists working in academia as well as in the industry. In addition, it has useful information for pharmaceutical physicians and scientists in many disciplines involved in developing DDS, such as chemical engineering, biomedical engineering, protein engineering, gene therapy. - Presents some of the latest innovations of approaches to DDS from dynamic controlled drug delivery, modeling, system analysis, optimization, control and monitoring - Provides a unique, recent and comprehensive reference on DDS with the focus on cutting-edge technologies and the latest research trends in the area - Covers the most recent works, in particular, the challenging areas related to modeling and control techniques applied to DDS
Since the earliest dosage forms to modern drug delivery systems, came a great development and growth of knowledge with respect to drug delivery. Strategies to Modify the Drug Release from Pharmaceutical Systems will address principles, systems, applications and advances in the field.It will be principally a textbook and a reference source of strategies to modify the drug release. Moreover, the characterization, mathematical and physicochemical models, applications and the systems will be discussed. - Addresses the principles, systems, applications and advances in the field of drug delivery - Highlights the mathematical and physicochemical principles related to strategies - Discusses drug release and its possible modifications
Advanced Drug Delivery Systems in the Management of Cancer discusses recent developments in nanomedicine and nano-based drug delivery systems used in the treatment of cancers affecting the blood, lungs, brain, and kidneys. The research presented in this book includes international collaborations in the area of novel drug delivery for the treatment of cancer. Cancer therapy remains one of the greatest challenges in modern medicine, as successful treatment requires the elimination of malignant cells that are closely related to normal cells within the body. Advanced drug delivery systems are carriers for a wide range of pharmacotherapies used in many applications, including cancer treatment. The use of such carrier systems in cancer treatment is growing rapidly as they help overcome the limitations associated with conventional drug delivery systems. Some of the conventional limitations that these advanced drug delivery systems help overcome include nonspecific targeting, systemic toxicity, poor oral bioavailability, reduced efficacy, and low therapeutic index. This book begins with a brief introduction to cancer biology. This is followed by an overview of the current landscape in pharmacotherapy for the cancer management. The need for advanced drug delivery systems in oncology and cancer treatment is established, and the systems that can be used for several specific cancers are discussed. Several chapters of the book are devoted to discussing the latest technologies and advances in nanotechnology. These include practical solutions on how to design a more effective nanocarrier for the drugs used in cancer therapeutics. Each chapter is written with the goal of informing readers about the latest advancements in drug delivery system technologies while reinforcing understanding through various detailed tables, figures, and illustrations. Advanced Drug Delivery Systems in the Management of Cancer is a valuable resource for anyone working in the fields of cancer biology and drug delivery, whether in academia, research, or industry. The book will be especially useful for researchers in drug formulation and drug delivery as well as for biological and translational researchers working in the field of cancer. - Presents an overview of the recent perspectives and challenges within the management and diagnosis of cancer - Provides insights into how advanced drug delivery systems can effectively be used in the management of a wide range of cancers - Includes up-to-date information on diagnostic methods and treatment strategies using controlled drug delivery systems
Oral Drug Absorption, Second Edition thoroughly examines the special equipment and methods used to test whether drugs are released adequately when administered orally. The contributors discuss methods for accurately establishing and validating in vitro/in vivo correlations for both MR and IR formulations, as well as alternative approaches for MR an
In recent years, emerging trends in the design and development of drug products have indicated ever greater need for integrated characterization of excipients and in-depth understanding of their roles in drug delivery applications. This book presents a concise summary of relevant scientific and mechanistic information that can aid the use of excipients in formulation design and drug delivery applications. Each chapter is contributed by chosen experts in their respective fields, which affords truly in-depth perspective into a spectrum of excipient-focused topics. This book captures current subjects of interest – with the most up to date research updates – in the field of pharmaceutical excipients. This includes areas of interest to the biopharmaceutical industry users, students, educators, excipient manufacturers, and regulatory bodies alike.
Dosage Form Design Parameters, Volume I, examines the history and current state of the field within the pharmaceutical sciences, presenting key developments. Content includes drug development issues, the scale up of formulations, regulatory issues, intellectual property, solid state properties and polymorphism. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of dosage form design parameters. Chapters delve into a particular aspect of this fundamental field, covering principles, methodologies and the technologies employed by pharmaceutical scientists. In addition, the book contains a comprehensive examination suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnology and related industries. - Examines the history and recent developments in drug dosage forms for pharmaceutical sciences - Focuses on physicochemical aspects, prefomulation solid state properties and polymorphism - Contains extensive references for further discovery and learning that are appropriate for advanced undergraduates, graduate students and those interested in drug dosage design