Multiobjective Optimization

Multiobjective Optimization

Author: Jürgen Branke

Publisher: Springer

Published: 2008-10-18

Total Pages: 481

ISBN-13: 3540889086

DOWNLOAD EBOOK

Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.


Multiobjective Optimization

Multiobjective Optimization

Author: Yann Collette

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 290

ISBN-13: 3662088835

DOWNLOAD EBOOK

This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.


Multi-Objective Optimization using Artificial Intelligence Techniques

Multi-Objective Optimization using Artificial Intelligence Techniques

Author: Seyedali Mirjalili

Publisher: Springer

Published: 2019-07-24

Total Pages: 58

ISBN-13: 3030248356

DOWNLOAD EBOOK

This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.


Multi-Objective Optimization

Multi-Objective Optimization

Author: Gade Pandu Rangaiah

Publisher: World Scientific

Published: 2009

Total Pages: 454

ISBN-13: 9812836527

DOWNLOAD EBOOK

Optimization has been playing a key role in the design, planning and operation of chemical and related processes for nearly half a century. Although process optimization for multiple objectives was studied by several researchers back in the 1970s and 1980s, it has attracted active research in the last 10 years, spurred by the new and effective techniques for multi-objective optimization. In order to capture this renewed interest, this monograph presents the recent and ongoing research in multi-optimization techniques and their applications in chemical engineering. Following a brief introduction and general review on the development of multi-objective optimization applications in chemical engineering since 2000, the book gives a description of selected multi-objective techniques and then goes on to discuss chemical engineering applications. These applications are from diverse areas within chemical engineering, and are presented in detail. All chapters will be of interest to researchers in multi-objective optimization and/or chemical engineering; they can be read individually and used in one''s learning and research. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.


Multi-Objective Optimization in Theory and Practice I: Classical Methods

Multi-Objective Optimization in Theory and Practice I: Classical Methods

Author: Andre A. Keller

Publisher: Bentham Science Publishers

Published: 2017-12-13

Total Pages: 296

ISBN-13: 1681085682

DOWNLOAD EBOOK

Multi-Objective Optimization in Theory and Practice is a traditional two-part approach to solving multi-objective optimization (MOO) problems namely the use of classical methods and evolutionary algorithms. This first book is devoted to classical methods including the extended simplex method by Zeleny and preference-based techniques. This part covers three main topics through nine chapters. The first topic focuses on the design of such MOO problems, their complexities including nonlinearities and uncertainties, and optimality theory. The second topic introduces the founding solving methods including the extended simplex method to linear MOO problems and weighting objective methods. The third topic deals with particular structures of MOO problems, such as mixed-integer programming, hierarchical programming, fuzzy logic programming, and bimatrix games. Multi-Objective Optimization in Theory and Practice is a user-friendly book with detailed, illustrated calculations, examples, test functions, and small-size applications in Mathematica® (among other mathematical packages) and from scholarly literature. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science, and mathematics degree programs.


Evolutionary Multiobjective Optimization

Evolutionary Multiobjective Optimization

Author: Ajith Abraham

Publisher: Springer Science & Business Media

Published: 2005-09-05

Total Pages: 313

ISBN-13: 1846281377

DOWNLOAD EBOOK

Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.


Multi-Objective Combinatorial Optimization Problems and Solution Methods

Multi-Objective Combinatorial Optimization Problems and Solution Methods

Author: Mehdi Toloo

Publisher: Academic Press

Published: 2022-02-09

Total Pages: 316

ISBN-13: 0128238003

DOWNLOAD EBOOK

Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms


Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization

Author: Kaisa Miettinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 1461555639

DOWNLOAD EBOOK

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.


Multicriteria Optimization

Multicriteria Optimization

Author: Matthias Ehrgott

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 329

ISBN-13: 3540276599

DOWNLOAD EBOOK

- Collection of results of multicriteria optimization, including nonlinear, linear and combinatorial optimization problems - Includes numerous illustrations, examples and problems


Efficient Learning Machines

Efficient Learning Machines

Author: Mariette Awad

Publisher: Apress

Published: 2015-04-27

Total Pages: 263

ISBN-13: 1430259906

DOWNLOAD EBOOK

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.