Multifunctional Conducting Molecular Materials

Multifunctional Conducting Molecular Materials

Author: Gunzi Saito

Publisher: Royal Society of Chemistry

Published: 2007

Total Pages: 319

ISBN-13: 0854044965

DOWNLOAD EBOOK

The use of conducting molecular materials is a rapidly developing, multidisciplinary field of research, offering a wide variety of possibilities for the future. It is of particular relevance to nano fabrication and technology because it offers high density, small size integrated and multifunctional properties that can be fabricated under mild conditions. Multifunctional Conducting Molecular Materials covers a wide range of topics including: molecular conductors and superconductors; design and synthesis of functional molecular materials; organic/inorganic hybrids and photoinduced phenomena; fullerenes, nanotubes and other related nano materials. The book concludes with a look at integration and functionalities of molecular materials such as organic field effect transistors (OFET). This high level book is ideal for researchers in both industry and academia who are interested in this new and exciting field.


Multifunctional Molecular Materials

Multifunctional Molecular Materials

Author: Lahcene Ouahab

Publisher: CRC Press

Published: 2013-01-24

Total Pages: 307

ISBN-13: 9814364304

DOWNLOAD EBOOK

This book provides a comprehensive overview on multifunctional molecular materials that involve coexistence or interplay or synergy between multiple physical properties focusing on electrical conductivity, magnetism, single-molecule magnets behavior, chirality, spin crossover, and luminescence. The book's coverage ranges from transition metals and


Functional Molecular Materials

Functional Molecular Materials

Author: Matteo Atzori

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 400

ISBN-13: 1351233653

DOWNLOAD EBOOK

The field of molecular materials represents an exciting playground for the design, tailoring, and combination of chemical building blocks as carriers of physical properties and aims at the understanding and development of novel functional molecular devices. Within this extraordinarily widespread framework, the realization of materials with the desired functionalities can only be achieved through a rational design strategy based on a solid understanding of the chemical and physical features of each constituting building block. This book provides a general overview of molecular materials, discussing their key features in a simple and organic way by focusing more on basic concepts rather than on specialized descriptions, in order to supply the non-expert reader with the immediate fundamental tools and hints to understand and develop research in this field. With this view, it is a step-by-step guide toward the preparation of functional molecular materials, where the knowledge and understanding so far attained by the scientific community through the investigation of significant archetypical examples is deconstructed down to the fundamental basis and then presented in reverse, from the base to the top.


Conducting and Magnetic Organometallic Molecular Materials

Conducting and Magnetic Organometallic Molecular Materials

Author: Marc Fourmigué

Publisher: Springer Science & Business Media

Published: 2009-06-17

Total Pages: 199

ISBN-13: 3642004083

DOWNLOAD EBOOK

For several years, the two parallel worlds of Molecular Conductors in one hand and Molecular Magnetism in the other have grown side by side, the former essentially based on radical organic molecules, the latter essentially based on the high spin properties of metal complexes. Over the last few years however, organometallic derivatives have started to play an increasingly important role in both worlds, and have in many ways contributed to open several passages between these two worlds. This volume recognizes this important emerging evolution of both research areas. It is not intended to give a comprehensive view of all possible organometallic materials, and polymers for example were not considered here. Rather we present a selection of the most recent research topics where organometallic derivatives were shown to play a crucial role in the setting of conducting and/or magnetic properties in crystalline materials. First, the role of organometallic anions in tet- thiafulvalenium-based molecular conductors is highlighted by Schlueter, while Kubo and Kato describe very recent ortho-metalated chelating ligands appended to the TTF core and their conducting salts. The combination of conducting and magnetic properties and the search for p–d interactions are analyzed in two comp- mentary contributions by Myazaki and Ouahab, while Valade focuses on the only class of metal bis(dithiolene) complexes to give rise to superconductive molecular materials, in association with organic as well as organometallic cations.


Molecular Magnetic Materials

Molecular Magnetic Materials

Author: Barbara Sieklucka

Publisher: John Wiley & Sons

Published: 2017-01-17

Total Pages: 508

ISBN-13: 3527339531

DOWNLOAD EBOOK

A comprehensive overview of this rapidly expanding interdisciplinary field of research. After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets. The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.


Functional Materials

Functional Materials

Author: Toshio Naito

Publisher: CRC Press

Published: 2019-01-15

Total Pages: 480

ISBN-13: 0429886721

DOWNLOAD EBOOK

The world is currently facing the urgent and demanding challenges of saving and utilizing energy as efficiently as possible. Materials science, where chemistry meets physics, has garnered a great deal of attention because of its versatile techniques for designing and producing new, desired materials enabling energy storage and conversion. This book is a comprehensive survey of the research on such materials. Unlike a monograph or a review book, it covers a wide variety of compounds, details diverse study methodologies, and spans different scientific fields. It contains cutting-edge research in chemistry and physics from the interdisciplinary team of Ehime University (Japan), the members of which are currently broadening the horizon of materials sciences through their own ideas, tailored equipment, and state-of-the-art techniques. Edited by Toshio Naito, a prominent materials scientist, this book will appeal to anyone interested in solid-state chemistry, organic and inorganic semiconductors, low-temperature physics, or the development of functional materials, including advanced undergraduate- and graduate-level students of solid-state properties and researchers in metal-complex science, materials science, chemistry, and physics, especially those with an interest in (semi)conducting and/or magnetic materials for energy storage and conversion.


Magnetism of Molecular Conductors

Magnetism of Molecular Conductors

Author: Manuel Almeida

Publisher: MDPI

Published: 2018-06-22

Total Pages: 237

ISBN-13: 3038429317

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Magnetism of Molecular Conductors" that was published in Magnetochemistry


Nano and Molecular Electronics Handbook

Nano and Molecular Electronics Handbook

Author: Sergey Edward Lyshevski

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 1032

ISBN-13: 1351837567

DOWNLOAD EBOOK

There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.


Spin-Crossover Materials

Spin-Crossover Materials

Author: Malcolm A. Halcrow

Publisher: John Wiley & Sons

Published: 2013-01-07

Total Pages: 729

ISBN-13: 1118519310

DOWNLOAD EBOOK

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.