The primary purpose in this book is to present an integrated and innovative methodological approach for the construction and selection of equity portfolios. The approach takes into account the inherent multidimensional nature of the problem, while allowing the decision makers to incorporate specified preferences in the decision processes. A fundamental principle of modern portfolio theory is that comparisons between portfolios are generally made using two criteria; the expected return and portfolio variance. According to most of the portfolio models derived from the stochastic dominance approach, the group of portfolios open to comparisons is divided into two parts: the efficient portfolios, and the dominated. This work integrates the two approaches providing a unified model for decision making in portfolio management with multiple criteria.​
This book covers topics in portfolio management and multicriteria decision analysis (MCDA), presenting a transparent and unified methodology for the portfolio construction process. The most important feature of the book includes the proposed methodological framework that integrates two individual subsystems, the portfolio selection subsystem and the portfolio optimization subsystem. An additional highlight of the book includes the detailed, step-by-step implementation of the proposed multicriteria algorithms in Python. The implementation is presented in detail; each step is elaborately described, from the input of the data to the extraction of the results. Algorithms are organized into small cells of code, accompanied by targeted remarks and comments, in order to help the reader to fully understand their mechanics. Readers are provided with a link to access the source code through GitHub. This Work may also be considered as a reference which presents the state-of-art research on portfolio construction with multiple and complex investment objectives and constraints. The book consists of eight chapters. A brief introduction is provided in Chapter 1. The fundamental issues of modern portfolio theory are discussed in Chapter 2. In Chapter 3, the various multicriteria decision aid methods, either discrete or continuous, are concisely described. In Chapter 4, a comprehensive review of the published literature in the field of multicriteria portfolio management is considered. In Chapter 5, an integrated and original multicriteria portfolio construction methodology is developed. Chapter 6 presents the web-based information system, in which the suggested methodological framework has been implemented. In Chapter 7, the experimental application of the proposed methodology is discussed and in Chapter 8, the authors provide overall conclusions. The readership of the book aims to be a diverse group, including fund managers, risk managers, investment advisors, bankers, private investors, analytics scientists, operations researchers scientists, and computer engineers, to name just several. Portions of the book may be used as instructional for either advanced undergraduate or post-graduate courses in investment analysis, portfolio engineering, decision science, computer science, or financial engineering.
Portfolio Decision Analysis: Improved Methods for Resource Allocation provides an extensive, up-to-date coverage of decision analytic methods which help firms and public organizations allocate resources to 'lumpy' investment opportunities while explicitly recognizing relevant financial and non-financial evaluation criteria and the presence of alternative investment opportunities. In particular, it discusses the evolution of these methods, presents new methodological advances and illustrates their use across several application domains. The book offers a many-faceted treatment of portfolio decision analysis (PDA). Among other things, it (i) synthesizes the state-of-play in PDA, (ii) describes novel methodologies, (iii) fosters the deployment of these methodologies, and (iv) contributes to the strengthening of research on PDA. Portfolio problems are widely regarded as the single most important application context of decision analysis, and, with its extensive and unique coverage of these problems, this book is a much-needed addition to the literature. The book also presents innovative treatments of new methodological approaches and their uses in applications. The intended audience consists of practitioners and researchers who wish to gain a good understanding of portfolio decision analysis and insights into how PDA methods can be leveraged in different application contexts. The book can also be employed in courses at the post-graduate level.
Multicriterion Decision in Management: Principles and Practice is the first multicriterion analysis book devoted exclusively to discrete multicriterion decision making. Typically, multicriterion analysis is used in two distinct frameworks: Firstly, there is multiple criteria linear programming, which is an extension of the results of linear programming and its associated algorithms. Secondly, there is discrete multicriterion decision making, which is concerned with choices among a finite number of possible alternatives such as projects, investments, decisions, etc. This is the focus of this book. The book concentrates on the basic principles in the domain of discrete multicriterion analysis, and examines each of these principles in terms of their properties and their implications. In multicriterion decision analysis, any optimum in the strict sense of the term does not exist. Rather, multicriterion decision making utilizes tools, methods, and thinking to examine several solutions, each having their advantages and disadvantages, depending on one's point of view. Actually, various methods exist for reaching a good choice in a multicriterion setting and even a complete ranking of the alternatives. The book describes and compares these methods, so-called `aggregation methods', with their advantages and their shortcomings. Clearly, organizations are becoming more complex, and it is becoming harder and harder to disregard complexity of points of view, motivations, and objectives. The day of the single objective (profit, social environment, etc. ) is over and the wishes of all those involved in all their diversity must be taken into account. To do this, a basic knowledge of multicriterion decision analysis is necessary. The objective of this book is to supply that knowledge and enable it to be applied. The book is intended for use by practitioners (managers, consultants), researchers, and students in engineering and business.
This book develops a whole strategy for decision-making, with the full participation of the decision-maker and utilizing continuous feedback. It introduces the use of the very well-known and proven methodology, linear programming, but specially adapted for this purpose. For this, it incorporates a method to include subjective concepts, as well as the possibility of working with many different and even contradictory objectives. The book is liberally populated with diverse case studies to illustrate the concepts. This practical guide will be of interest to anyone undertaking analysis and decision-making, on both simple and complex projects, and who is looking for a strategy to organize, classify, and evaluate the large amount of information required to make an informed decision. The strategy includes methods to analyze the results and extract conclusions from them.
The book discusses a new approach to the classification problem following the decision support orientation of multicriteria decision aid. The book reviews the existing research on the development of classification methods, investigating the corresponding model development procedures, and providing a thorough analysis of their performance both in experimental situations and real-world problems from the field of finance. Audience: Researchers and professionals working in management science, decision analysis, operations research, financial/banking analysis, economics, statistics, computer science, as well as graduate students in management science and operations research.
Representing the first collection on the topic, this book builds from foundations to case studies, to future prospects, providing the reader with a rich and comprehensive understanding of the use of multi-criteria decision analysis (MCDA) in healthcare. The first section of the collection presents the foundations of MCDA as it is applied to healthcare decisions, providing guidance on the ethical and theoretical underpinnings of MCDA and how to select MCDA methods appropriate to different decision settings. Section two comprises a collection of case studies spanning the decision continuum, including portfolio development, benefit–risk assessment, health technology assessment, priority setting, resource optimisation, clinical practice and shared decision making. Section three explores future directions in the application of MCDA to healthcare and identifies opportunities for further research to support these.
This book is focused on the application of methodological approaches and systems of multiple criteria decision analysis (MCDA) in the field of resource management. Resource management constitutes a major challenge of modern times. The book comprehensively examines cases of human resources, material resources and natural resources in particular. It focuses on the efficient utilization of these resources to achieve sustainability of economic, environmental and social aspects. Also, the book presents methodological tools which aim to support the decision making at operational, executive and strategic levels.The book presents recent results of scientific research in the field of MCDA and its applications to resource management. It investigates the resource management challenges and introduces innovative methodological approaches and systems for addressing these resources management issues.
Multiple Criteria Decision Making (MCDM) is a subfield of Operations Research, dealing with decision making problems. A decision-making problem is characterized by the need to choose one or a few among a number of alternatives. The field of MCDM assumes special importance in this era of Big Data and Business Analytics. In this volume, the focus will be on modelling-based tools for Business Analytics (BA), with exclusive focus on the sub-field of MCDM within the domain of operations research. The book will include an Introduction to Big Data and Business Analytics, and challenges and opportunities for developing MCDM models in the era of Big Data.
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.