Multi-Scale Biogeochemical Processes in Soil Ecosystems

Multi-Scale Biogeochemical Processes in Soil Ecosystems

Author: Yu Yang

Publisher: John Wiley & Sons

Published: 2022-04-12

Total Pages: 353

ISBN-13: 1119480345

DOWNLOAD EBOOK

MULTI-SCALE BIOGEOCHEMICAL PROCESSES IN SOIL ECOSYSTEMS Provides a state-of-the-art overview of research in soil biogeochemical processes and strategies for greenhouse gas mitigation under climate change Food security and soil health for the rapidly growing human population are threatened by increased temperature and drought, soil erosion and soil quality degradation, and other problems caused by human activities and a changing climate. Because greenhouse gas emission is the primary driver of climate change, a complete understanding of the cycles of carbon and major nutritional elements is critical for developing innovative strategies to sustain agricultural development and environmental conservation. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is an up-to-date overview of recent research in soil biogeochemical processes and applications in ecosystem management. Organized into three parts, the text examines molecular-scale processes and critical reactions, presents ecosystem-scale studies of ecological hotspots, and discusses large-scale modeling and prediction of global biogeochemical cycles. Part of the Wiley - IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, this authoritative volume: Provides readers with a systematic and interdisciplinary approach to sustainable agricultural development and management of soil ecosystems in a changing climate Features contributions from an international team of leading scientists Examines topics such as soil organic matter stabilization, soil biogeochemistry modeling, and soil responses to environmental changes Discusses strategies for mitigating greenhouse gas emission and improving soil health and ecosystems resilience Includes an introduction to working across scales to project soil biogeochemical responses to climatic change Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is essential reading for scientists, engineers, agronomists, chemists, biologists, academic researchers, consultants, and other professionals whose work involves the nutrient cycle, ecosystem management, and climate change.


Multi-Scale Biogeochemical Processes in Soil Ecosystems

Multi-Scale Biogeochemical Processes in Soil Ecosystems

Author: Yu Yang

Publisher: John Wiley & Sons

Published: 2022-03-23

Total Pages: 353

ISBN-13: 1119480477

DOWNLOAD EBOOK

MULTI-SCALE BIOGEOCHEMICAL PROCESSES IN SOIL ECOSYSTEMS Provides a state-of-the-art overview of research in soil biogeochemical processes and strategies for greenhouse gas mitigation under climate change Food security and soil health for the rapidly growing human population are threatened by increased temperature and drought, soil erosion and soil quality degradation, and other problems caused by human activities and a changing climate. Because greenhouse gas emission is the primary driver of climate change, a complete understanding of the cycles of carbon and major nutritional elements is critical for developing innovative strategies to sustain agricultural development and environmental conservation. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is an up-to-date overview of recent research in soil biogeochemical processes and applications in ecosystem management. Organized into three parts, the text examines molecular-scale processes and critical reactions, presents ecosystem-scale studies of ecological hotspots, and discusses large-scale modeling and prediction of global biogeochemical cycles. Part of the Wiley - IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, this authoritative volume: Provides readers with a systematic and interdisciplinary approach to sustainable agricultural development and management of soil ecosystems in a changing climate Features contributions from an international team of leading scientists Examines topics such as soil organic matter stabilization, soil biogeochemistry modeling, and soil responses to environmental changes Discusses strategies for mitigating greenhouse gas emission and improving soil health and ecosystems resilience Includes an introduction to working across scales to project soil biogeochemical responses to climatic change Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is essential reading for scientists, engineers, agronomists, chemists, biologists, academic researchers, consultants, and other professionals whose work involves the nutrient cycle, ecosystem management, and climate change.


The European Nitrogen Assessment

The European Nitrogen Assessment

Author: Mark A. Sutton

Publisher: Cambridge University Press

Published: 2011-04-14

Total Pages: 665

ISBN-13: 1139501372

DOWNLOAD EBOOK

Presenting the first continental-scale assessment of reactive nitrogen in the environment, this book sets the related environmental problems in context by providing a multidisciplinary introduction to the nitrogen cycle processes. Issues of upscaling from farm plot and city to national and continental scales are addressed in detail with emphasis on opportunities for better management at local to global levels. The five key societal threats posed by reactive nitrogen are assessed, providing a framework for joined-up management of the nitrogen cycle in Europe, including the first cost-benefit analysis for different reactive nitrogen forms and future scenarios. Incorporating comprehensive maps, a handy technical synopsis and a summary for policy makers, this landmark volume is an essential reference for academic researchers across a wide range of disciplines, as well as stakeholders and policy makers. It is also a valuable tool in communicating the key environmental issues and future challenges to the wider public.


Biogeochemical Cycles

Biogeochemical Cycles

Author: Katerina Dontsova

Publisher: John Wiley & Sons

Published: 2020-04-14

Total Pages: 336

ISBN-13: 1119413303

DOWNLOAD EBOOK

Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf


The Microbial Regulation of Global Biogeochemical Cycles

The Microbial Regulation of Global Biogeochemical Cycles

Author: Johannes Rousk

Publisher: Frontiers E-books

Published: 2014-10-17

Total Pages: 242

ISBN-13: 2889192970

DOWNLOAD EBOOK

Global biogeochemical cycles of carbon and nutrients are increasingly affected by human activities. So far, modeling has been central for our understanding of how this will affect ecosystem functioning and the biogeochemical cycling of carbon and nutrients. These models have been forced to adopt a reductive approach built on the flow of carbon and nutrients between pools that are difficult or even impossible to verify with empirical evidence. Furthermore, while some of these models include the response in physiology, ecology and biogeography of primary producers to environmental change, the microbial part of the ecosystem is generally poorly represented or lacking altogether. The principal pool of carbon and nutrients in soil is the organic matter. The turnover of this reservoir is governed by microorganisms that act as catalytic converters of environmental conditions into biogeochemical cycling of carbon and nutrients. The dependency of this conversion activity on individual environmental conditions such as pH, moisture and temperature has been frequently studied. On the contrary, only rarely have the microorganisms involved in carrying out the processes been identified, and one of the biggest challenges for advancing our understanding of biogeochemical processes is to identify the microorganisms carrying out a specific set of metabolic processes and how they partition their carbon and nutrient use. We also need to identify the factors governing these activities and if they result in feedback mechanisms that alter the growth, activity and interaction between primary producers and microorganisms. By determining how different groups of microorganisms respond to individual environmental conditions by allocating carbon and nutrients to production of biomass, CO2 and other products, a mechanistic as well as quantitative understanding of formation and decomposition of organic matter, and the production and consumption of greenhouse gases, can be achieved. In this Research Topic, supported by the Swedish research councils' programme "Biodiversity and Ecosystem Services in a Changing Landscape" (BECC), we intend to promote this alternative framework to address how cycling of carbon and nutrients will be altered in a changing environment from the first-principle mechanisms that drive them – namely the ecology, physiology and biogeography of microorganisms – and on up to emerging global biogeochemical patterns. This novel and unconventional approach has the potential to generate fresh insights that can open up new horizons and stimulate rapid conceptual development in our basic understanding of the regulating factors for global biogeochemical cycles. The vision for the research topic is to facilitate such progress by bringing together leading scientists as proponents of several disciplines. By bridging Microbial Ecology and Biogeochemistry, connecting microbial activities at the micro-scale to carbon fluxes at the ecosystem-scale, and linking above- and belowground ecosystem functioning, we can leap forward from the current understanding of the global biogeochemical cycles.


Soil Carbon Storage

Soil Carbon Storage

Author: Brajesh Singh

Publisher: Academic Press

Published: 2018-04-12

Total Pages: 341

ISBN-13: 0128127678

DOWNLOAD EBOOK

Soil Carbon Storage: Modulators, Mechanisms and Modeling takes a novel approach to the issue of soil carbon storage by considering soil C sequestration as a function of the interaction between biotic (e.g. microbes and plants) and abiotic (climate, soil types, management practices) modulators as a key driver of soil C. These modulators are central to C balance through their processing of C from both plant inputs and native soil organic matter. This book considers this concept in the light of state-of-the-art methodologies that elucidate these interactions and increase our understanding of a vitally important, but poorly characterized component of the global C cycle. The book provides soil scientists with a comprehensive, mechanistic, quantitative and predictive understanding of soil carbon storage. It presents a new framework that can be included in predictive models and management practices for better prediction and enhanced C storage in soils. Identifies management practices to enhance storage of soil C under different agro-ecosystems, soil types and climatic conditions Provides novel conceptual frameworks of biotic (especially microbial) and abiotic data to improve prediction of simulation model at plot to global scale Advances the conceptual framework needed to support robust predictive models and sustainable land management practices


Proximal Soil Sensing

Proximal Soil Sensing

Author: Raphael A. Viscarra Rossel

Publisher: Springer Science & Business Media

Published: 2010-07-25

Total Pages: 440

ISBN-13: 9048188598

DOWNLOAD EBOOK

This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and high land-value applications, where there is a particular need for high spatial resolution information. The book in particular covers soil sensor sampling, proximal soil sensor development and use, sensor calibrations, prediction methods for large data sets, applications of proximal soil sensing, and high-resolution digital soil mapping. Key themes: soil sensor sampling – soil sensor calibrations – spatial prediction methods – reflectance spectroscopy – electromagnetic induction and electrical resistivity – radar and gamma radiometrics – multi-sensor platforms – high resolution digital soil mapping - applications Raphael A. Viscarra Rossel is a scientist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. Alex McBratney is Pro-Dean and Professor of Soil Science in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia. Budiman Minasny is a Senior Research Fellow in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia.


Biogeochemistry

Biogeochemistry

Author: William H Schlesinger

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 458

ISBN-13: 0323137849

DOWNLOAD EBOOK

Biochemistry: An Analysis of Global Change provides information pertinent to the chemistry of the surface of the Earth. This book presents the basics about the effect of life on the chemistry of the Earth. Organized into two parts encompassing 14 chapters, this book begins with an overview of the connection between the elements that are significant to life. This text then describes how computer models are employed to help understand elemental cycling and ecosystem function. Other chapters consider how satellite technology is beneficial in understanding global biochemistry. This book discusses as well the essential role theta the Earth Observing System (EOS) will play in investigations of global ecology. The final chapter deals with the human effect on global biochemical cycles, with focus on controlling human population growth to maintain life and quality of life on Earth. This book is a valuable resource for college-level and graduate students who are interested in global change.


Intermittent Rivers and Ephemeral Streams

Intermittent Rivers and Ephemeral Streams

Author: Thibault Datry

Publisher: Academic Press

Published: 2017-07-11

Total Pages: 624

ISBN-13: 0128039043

DOWNLOAD EBOOK

Intermittent Rivers and Ephemeral Streams: Ecology and Management takes an internationally broad approach, seeking to compare and contrast findings across multiple continents, climates, flow regimes, and land uses to provide a complete and integrated perspective on the ecology of these ecosystems. Coupled with this, users will find a discussion of management approaches applicable in different regions that are illustrated with relevant case studies. In a readable and technically accurate style, the book utilizes logically framed chapters authored by experts in the field, allowing managers and policymakers to readily grasp ecological concepts and their application to specific situations. Provides up-to-date reviews of research findings and management strategies using international examples Explores themes and parallels across diverse sub-disciplines in ecology and water resource management utilizing a multidisciplinary and integrative approach Reveals the relevance of this scientific understanding to managers and policymakers