Logical and Relational Learning

Logical and Relational Learning

Author: Luc De Raedt

Publisher: Springer Science & Business Media

Published: 2008-09-27

Total Pages: 395

ISBN-13: 3540688560

DOWNLOAD EBOOK

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.


Multi-Relational Data Mining

Multi-Relational Data Mining

Author: B.L.J. Kaczmarek

Publisher: IOS Press

Published: 2006-08-25

Total Pages: 128

ISBN-13: 1607501988

DOWNLOAD EBOOK

With the increased possibilities in modern society for companies and institutions to gather data cheaply and efficiently, the subject of Data Mining has become of increasing importance. This interest has inspired a rapidly maturing research field with developments both on a theoretical, as well as on a practical level with the availability of a range of commercial tools. Unfortunately, the widespread application of this technology has been limited by an important assumption in mainstream Data Mining approaches. This assumption – all data resides, or can be made to reside, in a single table – prevents the use of these Data Mining tools in certain important domains, or requires considerable massaging and altering of the data as a pre-processing step. This limitation has spawned a relatively recent interest in richer Data Mining paradigms that do allow structured data as opposed to the traditional flat representation. This publication goes into the different uses of Data Mining, with Multi-Relational Data Mining (MRDM), the approach to Structured Data Mining, as the main subject of this book.


Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

Author: Lise Getoor

Publisher: MIT Press

Published: 2019-09-22

Total Pages: 602

ISBN-13: 0262538687

DOWNLOAD EBOOK

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.


Logical and Relational Learning

Logical and Relational Learning

Author: Luc De Raedt

Publisher: Springer Science & Business Media

Published: 2008-09-12

Total Pages: 395

ISBN-13: 3540200401

DOWNLOAD EBOOK

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.


Relational Data Mining

Relational Data Mining

Author: Saso Dzeroski

Publisher: Springer Science & Business Media

Published: 2001-08

Total Pages: 422

ISBN-13: 9783540422891

DOWNLOAD EBOOK

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.


Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

Author: Lise Getoor

Publisher: MIT Press

Published: 2007

Total Pages: 602

ISBN-13: 0262072882

DOWNLOAD EBOOK

In 'Introduction to Statistical Relational Learning', leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.


Author:

Publisher: IOS Press

Published:

Total Pages: 3525

ISBN-13:

DOWNLOAD EBOOK


Encyclopedia of Machine Learning

Encyclopedia of Machine Learning

Author: Claude Sammut

Publisher: Springer Science & Business Media

Published: 2011-03-28

Total Pages: 1061

ISBN-13: 0387307680

DOWNLOAD EBOOK

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.


Handbook on Neural Information Processing

Handbook on Neural Information Processing

Author: Monica Bianchini

Publisher: Springer Science & Business Media

Published: 2013-04-12

Total Pages: 547

ISBN-13: 3642366570

DOWNLOAD EBOOK

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.


Inductive Logic Programming

Inductive Logic Programming

Author: Stefan Kramer

Publisher: Springer Science & Business Media

Published: 2005-08-11

Total Pages: 437

ISBN-13: 3540281770

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 15th International Conference on Inductive Logic Programming, ILP 2005, held in Bonn, Germany, in August 2005. The 24 revised full papers presented together with the abstract of 4 invited lectures were carefully reviewed and selected for inclusion in the book. The papers address all current topics in inductive logic programming, ranging from theoretical and methodological issues to advanced applications in various areas, also including more diverse forms of non-propositional learning.