Product Design Optimization Under Epistemic Uncertainty

Product Design Optimization Under Epistemic Uncertainty

Author: Xiaotian Zhuang

Publisher:

Published: 2012

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

This dissertation is to address product design optimization including reliability-based design optimization (RBDO) and robust design with epistemic uncertainty. It is divided into four major components as outlined below. Firstly, a comprehensive study of uncertainties is performed, in which sources of uncertainty are listed, categorized and the impacts are discussed. Epistemic uncertainty is of interest, which is due to lack of knowledge and can be reduced by taking more observations. In particular, the strategies to address epistemic uncertainties due to implicit constraint function are discussed. Secondly, a sequential sampling strategy to improve RBDO under implicit constraint function is developed. In modern engineering design, an RBDO task is often performed by a computer simulation program, which can be treated as a black box, as its analytical function is implicit. An efficient sampling strategy on learning the probabilistic constraint function under the design optimization framework is presented. The method is a sequential experimentation around the approximate most probable point (MPP) at each step of optimization process. It is compared with the methods of MPP-based sampling, lifted surrogate function, and non-sequential random sampling. Thirdly, a particle splitting-based reliability analysis approach is developed in design optimization. In reliability analysis, traditional simulation methods such as Monte Carlo simulation may provide accurate results, but are often accompanied with high computational cost. To increase the efficiency, particle splitting is integrated into RBDO. It is an improvement of subset simulation with multiple particles to enhance the diversity and stability of simulation samples. This method is further extended to address problems with multiple probabilistic constraints and compared with the MPP-based methods. Finally, a reliability-based robust design optimization (RBRDO) framework is provided to integrate the consideration of design reliability and design robustness simultaneously. The quality loss objective in robust design, considered together with the production cost in RBDO, are used formulate a multi-objective optimization problem. With the epistemic uncertainty from implicit performance function, the sequential sampling strategy is extended to RBRDO, and a combined metamodel is proposed to tackle both controllable variables and uncontrollable variables. The solution is a Pareto frontier, compared with a single optimal solution in RBDO.


Design Optimization Under Uncertainty

Design Optimization Under Uncertainty

Author: Weifei Hu

Publisher: Springer Nature

Published: 2023-12-22

Total Pages: 282

ISBN-13: 3031492080

DOWNLOAD EBOOK

This book introduces the fundamentals of probability, statistical, and reliability concepts, the classical methods of uncertainty quantification and analytical reliability analysis, and the state-of-the-art approaches of design optimization under uncertainty (e.g., reliability-based design optimization and robust design optimization). The topics include basic concepts of probability and distributions, uncertainty quantification using probabilistic methods, classical reliability analysis methods, time-variant reliability analysis methods, fundamentals of deterministic design optimization, reliability-based design optimization, robust design optimization, other methods of design optimization under uncertainty, and engineering applications of design optimization under uncertainty.


Multidisciplinary Design Optimization of Complex Structures Under Uncertainty

Multidisciplinary Design Optimization of Complex Structures Under Uncertainty

Author: Debiao Meng

Publisher: CRC Press

Published: 2024-09-02

Total Pages: 349

ISBN-13: 1040113516

DOWNLOAD EBOOK

In the realm of engineering structures design, the inevitability of uncertainties poses a significant challenge. Uncertainty-Based Multidisciplinary Design and Optimization (UBMDO) stands out for its dual ability to precisely quantify the impact of uncertain variables and harness the potential of multidisciplinary design and optimization, thereby attracting considerable attention. From basic theory to advanced applications, this book helps readers achieve more efficient and reliable design optimization in complex systems through rich case studies and practical technical guidance. The book systematically expounds the fundamental theories and methods of UBMDO, encompassing crucial techniques such as uncertainty modeling, sensitivity analysis, approximate modeling, and uncertainty-based optimization. It also introduces various uncertainty analysis methods, such as stochastic, non-probabilistic, and hybrid approaches, aiding readers in comprehending and managing uncertainty within systems. Through diverse practical engineering cases in fields like machinery, aerospace, and energy, it illustrates the specific application and implementation process of the UBMDO method. Rich graphics, algorithms, and simulation results augment the practicality and applicability of the theoretical knowledge. Furthermore, it explores in depth the future development trends and challenges of UBMDO, sparking innovative thinking and research interests among readers in this field. Multidisciplinary Design Optimization of Complex Structures Under Uncertainty caters to a diverse audience: Engineers specializing in multidisciplinary design optimization are given the tools to master uncertainty management, and researchers in related fields will gain important theoretical insights and practical guidance in uncertainty analysis. Additionally, scholars and educators can utilize the book as a comprehensive resource for advanced courses, enabling students to grasp the latest UBMDO applications. Decision makers and managers handling complex systems can extract methods from the book, facilitating improved risk assessment, and strategic development through uncertainty-based optimization.


Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences

Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences

Author: Edmondo Minisci

Publisher: Springer

Published: 2018-07-02

Total Pages: 555

ISBN-13: 3319899880

DOWNLOAD EBOOK

This volume presents up-to-date material on the state of the art in evolutionary and deterministic methods for design, optimization and control with applications to industrial and societal problems from Europe, Asia, and America. EUROGEN 2015 was the 11th of a series of International Conferences devoted to bringing together specialists from universities, research institutions and industries developing or applying evolutionary and deterministic methods in design optimization, with emphasis on solving industrial and societal problems. The conference was organised around a number of parallel symposia, regular sessions, and keynote lectures focused on surrogate-based optimization in aerodynamic design, adjoint methods for steady & unsteady optimization, multi-disciplinary design optimization, holistic optimization in marine design, game strategies combined with evolutionary computation, optimization under uncertainty, topology optimization, optimal planning, shape optimization, and production scheduling.


Multi-Objective Optimization in Chemical Engineering

Multi-Objective Optimization in Chemical Engineering

Author: Gade Pandu Rangaiah

Publisher: John Wiley & Sons

Published: 2013-03-20

Total Pages: 487

ISBN-13: 1118341686

DOWNLOAD EBOOK

For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.


Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems

Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems

Author: Esther Andrés-Pérez

Publisher: Springer

Published: 2018-09-06

Total Pages: 538

ISBN-13: 3319898906

DOWNLOAD EBOOK

This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.