Review of the New York City Watershed Protection Program

Review of the New York City Watershed Protection Program

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-12-04

Total Pages: 423

ISBN-13: 0309679702

DOWNLOAD EBOOK

New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.


Calibration of Watershed Models

Calibration of Watershed Models

Author: Qingyun Duan

Publisher: John Wiley & Sons

Published: 2003-01-10

Total Pages: 356

ISBN-13: 087590355X

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.


River Water Quality Model

River Water Quality Model

Author: P. Reichert

Publisher: IWA Publishing

Published: 2001-08-31

Total Pages: 150

ISBN-13: 9781900222822

DOWNLOAD EBOOK

This Scientific and Technical Report (STR) presents the findings of the IWA Task Group on River Water Quality Modelling (RWQM). The task group was formed to create a scientific and technical base from which to formulate standardized, consistent river water quality models and guidelines for their implementation. This STR presents the first outcome in this effort: River Water Quality Model No. 1 (RWQM1). As background to the development of River Water Quality Model No.1, the Task Group completed a critical evaluation of the current state of the practice in water quality modelling. A major limitation in model formulation is the continued reliance on BOD as the primary state variable, despite the fact BOD does not include all biodegradable matter. A related difficulty is the poor representation of benthic flux terms. As a result of these limitations, it is impossible to close mass balances completely in most existing models. These various limitations in current river water quality models impair their predictive ability in situations of marked changes in a river's pollutant load, streamflow, morphometry, or other basic characteristics. RWQM 1 is intended to serve as a framework for river water quality models that overcome these deficiencies in traditional water quality models and most particularly the failure to close mass balances between the water column and sediment. To these ends, the model incorporates fundamental water quality components and processes to characterise carbon, oxygen, nitrogen, and phosphorus (C, O, N, and P) cycling instead of biochemical oxygen demand as used in traditional models. The model is presented in terms of process and components represented via a 'Petersen stoichiometry matrix', the same approach used for the IWA Activated Sludge Models. The full RWQM1 includes 24 components and 30 processes. The report provides detailed examples on reducing the numbers of components and processes to fit specific water quality problems. Thus, the model provides a framework for both complicated and simplified models. Detailed explanations of the model components, process equations, stoichiometric parameters, and kinetic parameters are provided, as are example parameter values and two case studies. The STR is intended to launch a participatory process of model development, application, and refinement. RWQM1 provides a framework for this process, but the goal of the Task Group is to involve water quality professionals worldwide in the continued work developing a new water quality modelling approach. This text will be an invaluable reference for researchers and graduate students specializing in water resources, hydrology, water quality, or environmental modelling in departments of environmental engineering, natural resources, civil engineering, chemical engineering, environmental sciences, and ecology. Water resources engineers, water quality engineers and technical specialists in environmental consultancy, government agencies or regulated industries will also value this critical assessment of the state of practice in water quality modelling. Key Features presents a unique new technical approach to river water quality modelling provides a detailed technical presentation of the RWQM1 water quality process model gives an informative critical evaluation of the state of the practice in water quality modelling, and problems with those practices provides a step by step procedure to develop a water quality model Scientific & Technical Report No. 12


Water Resource Systems Planning and Management

Water Resource Systems Planning and Management

Author: Daniel P. Loucks

Publisher: Springer

Published: 2017-03-02

Total Pages: 635

ISBN-13: 3319442341

DOWNLOAD EBOOK

This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.


Practical Hydroinformatics

Practical Hydroinformatics

Author: Robert J. Abrahart

Publisher: Springer Science & Business Media

Published: 2008-10-24

Total Pages: 495

ISBN-13: 3540798811

DOWNLOAD EBOOK

Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...


Urban Drainage

Urban Drainage

Author: David Butler

Publisher: CRC Press

Published: 2018-04-09

Total Pages: 695

ISBN-13: 1498750613

DOWNLOAD EBOOK

This new edition of a well-established textbook covers the environmental and engineering aspects of the management of rainwater and wastewater in areas of human development. Urban Drainage deals comprehensively not only with the design of new systems, but also the analysis and upgrading of existing infrastructure. Keeping its balance of principles, practice and research, this new edition has significant new material on modelling, resilience, smart systems, and the global and local context. The two new authors bring further research and practice-based experience. This is an essential text for undergraduate and graduate students, lecturers and researchers in water engineering, environmental engineering, public health engineering, engineering hydrology, and related non-engineering disciplines. It also serves as a dependable reference for drainage engineers in water service providers, local authorities, and for consulting engineers. Extensive examples are used to support and demonstrate the key issues throughout the text.


Modelling Aspects of Water Framework Directive Implementation

Modelling Aspects of Water Framework Directive Implementation

Author: Peter A. Vanrolleghem

Publisher: IWA Publishing

Published: 2010-04-30

Total Pages: 353

ISBN-13: 1843392232

DOWNLOAD EBOOK

Special Offer: Water Framework Directive Series Set. To buy all four titles including Volume 3 and save £100, visit: http://iwapublishing.com/books/9781780400013/water-framework-directive-series-set Modelling Aspects of Water Framework Directive Implementation: Volume 1 is a concrete outcome from the Harmoni-CA concerted action as part of a 4-volume series of Guidance Reports that guide water professionals through the implementation process of the Water Framework Directive, with a focus on the use of ICT-tools (and in particular modelling). They are complementary to the Guidance Documents produced by the EU Directorate General for Environment. Water resources planning and management and the development of appropriate policies require methodologies and tools that are able to support systematic, integrative and multidisciplinary assessments at various scales. It also requires the quantification of various uncertainties in both data and models, and the incorporation of stakeholders participation and institutional mechanisms into the various tools and risk assessment methodologies, to help decision makers understand and evaluate alternative measures and decisions. The other three volumes in the Water Framework Directive Series are: Water Framework Directive: Model supported Implementation - A Water Manager’s Guide edited by Fred Hattermann and Zbigniew W Kundzewicz Integrated Assessment for WFD implementation: Data, economic and human dimension - Volume 2, edited by Peter A. Vanrolleghem Decision support for WFD implementation - Volume 3, edited by Peter A. Vanrolleghem. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/IntegratedAssessmentforWaterFrameworkDirectiveImplementation


Rainfall-Runoff Modelling

Rainfall-Runoff Modelling

Author: Keith J. Beven

Publisher: John Wiley & Sons

Published: 2012-01-30

Total Pages: 489

ISBN-13: 047071459X

DOWNLOAD EBOOK

Rainfall-Runoff Modelling: The Primer, Second Edition is the follow-up of this popular and authoritative text, first published in 2001. The book provides both a primer for the novice and detailed descriptions of techniques for more advanced practitioners, covering rainfall-runoff models and their practical applications. This new edition extends these aims to include additional chapters dealing with prediction in ungauged basins, predicting residence time distributions, predicting the impacts of change and the next generation of hydrological models. Giving a comprehensive summary of available techniques based on established practices and recent research the book offers a thorough and accessible overview of the area. Rainfall-Runoff Modelling: The Primer Second Edition focuses on predicting hydrographs using models based on data and on representations of hydrological process. Dealing with the history of the development of rainfall-runoff models, uncertainty in mode predictions, good and bad practice and ending with a look at how to predict future catchment hydrological responses this book provides an essential underpinning of rainfall-runoff modelling topics. Fully revised and updated version of this highly popular text Suitable for both novices in the area and for more advanced users and developers Written by a leading expert in the field Guide to internet sources for rainfall-runoff modelling software


Hydrological Modelling and the Water Cycle

Hydrological Modelling and the Water Cycle

Author: Soroosh Sorooshian

Publisher: Springer Science & Business Media

Published: 2008-07-18

Total Pages: 294

ISBN-13: 3540778438

DOWNLOAD EBOOK

This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.