Multi-valued neutrosophic sets (MVNSs) have recently become a subject of great interest for researchers, and have been applied widely to multi-criteria decision-making (MCDM) problems.
Single-valued neutrosophic hesitant fuzzy sets (SVNHFSs) have recently become a subject of great interest for researchers, and have been applied widely to multi-criteria decision-making (MCDM) problems. In this paper, the singlevalued neutrosophic hesitant fuzzy geometric weighted Choquet integral Heronian mean operator, which is based on the Heronian mean and Choquet integral, is proposed, and some special cases and the corresponding properties of the operator are discussed. Moreover, based on the proposed operator, an MCDM approach for handling single-valued neutrosophic hesitant fuzzy information where the weights are unknown is investigated. Furthermore, an illustrative example to demonstrate the applicability of the proposed decision-making approach is provided, together with a sensitivity analysis and comparison analysis, which proves that its results are feasible and credible.
With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined.
Multi-valued neutrosophic sets (MVNSs) consider the truth-membership, indeterminacy-membership, and falsity-membership simultaneously, which can more accurately express the preference information of decision-makers. In this paper, the normalized multi-valued neutrosophic distance measure is developed firstly and the corresponding properties are investigated as well.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
At present, there are many subways being constructed in many cities. In the construction of subways, an appropriate scheme is helpful to save cost and ensure the quality of the project. This paper attaches great importance to present a multi-criteria group decision-making (MCGDM) method to deal with selecting an appropriate construction scheme for subways. The process of selecting an appropriate construction scheme for subways is complex because it includes a great deal of fuzzy and uncertain information which can be presented by multi-valued neutrosophic numbers (MVNNs). In addition, in order to handle the interaction of inputs, an improved generalized multi-valued neutrosophic weighted Heronian mean (IGMVNWHM) operator is introduced. Subsequently, a new distance measure between two MVNNs is defined for deriving the objective criteria weights.
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam.
The power Heronian aggregation (PHA) operator can use the advantages of power average and the Heronian mean operator, which together could take into account the interrelationship of the aggregated arguments, and therefore alleviate the e ects caused by unreasonable data through considering the support degree between input arguments. However, PHA operators cannot be used to process single-valued neutrosophic numbers (SVNNs), which is significant for extending it to SVNNs.
In this paper, the TODIM method is used to solve the multi-attribute decision-making problem with unknown attribute weight in venture capital, and the decision information is given in the form of single-valued neutrosophic numbers. In order to consider the objectivity and subjectivity of decision-making problems reasonably, the optimal weight is obtained by combining subjective weights and objective weights.