The Dynamic Morse Theory of Control Systems

The Dynamic Morse Theory of Control Systems

Author: Josiney Souza

Publisher: Cambridge Scholars Publishing

Published: 2020-01-20

Total Pages: 348

ISBN-13: 1527545849

DOWNLOAD EBOOK

This book provides insights into the dynamics of control systems with the integration of conceptions such as stability, controllability, attraction, and chain transitivity. It highlights the importance of Morse theory with its feature of describing the global dynamics of systems, presented here for the first time in control theory. The mathematical formulations are comprehensive, designed especially for students, researches, and professionals interested in qualitative studies of control systems. The reader will find the book an accessible source of basic definitions, properties, methods, examples, theorems, references, lists of problems, and open questions. Parts of the book may be used for courses or seminars in mathematics or control-theoretic engineering, and its reference guide will serve as a great resource for research projects and academic dissertations on control theory or dynamical systems.


Advances in Mathematics and Applications

Advances in Mathematics and Applications

Author: Carlile Lavor

Publisher: Springer

Published: 2018-09-07

Total Pages: 408

ISBN-13: 3319940155

DOWNLOAD EBOOK

This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.


Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory

Author: Yuri Kuznetsov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 648

ISBN-13: 1475739788

DOWNLOAD EBOOK

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.


Evolution Semigroups in Dynamical Systems and Differential Equations

Evolution Semigroups in Dynamical Systems and Differential Equations

Author: Carmen Chicone

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 375

ISBN-13: 0821811851

DOWNLOAD EBOOK

The main theme of the book is the spectral theory for evolution operators and evolution semigroups, a subject tracing its origins to the classical results of J. Mather on hyperbolic dynamical systems and J. Howland on nonautonomous Cauchy problems. The authors use a wide range of methods and offer a unique presentation. The authors give a unifying approach for a study of infinite-dimensional nonautonomous problems, which is based on the consistent use of evolution semigroups. This unifying idea connects various questions in stability of semigroups, infinite-dimensional hyperbolic linear skew-product flows, translation Banach algebras, transfer operators, stability radii in control theory, Lyapunov exponents, magneto-dynamics and hydro-dynamics. Thus the book is much broader in scope than existing books on asymptotic behavior of semigroups. Included is a solid collection of examples from different areas of analysis, PDEs, and dynamical systems. This is the first monograph where the spectral theory of infinite dimensional linear skew-product flows is described together with its connection to the multiplicative ergodic theorem; the same technique is used to study evolution semigroups, kinematic dynamos, and Ruelle operators; the theory of stability radii, an important concept in control theory, is also presented. Examples are included and non-traditional applications are provided.


Handbook of Dynamical Systems

Handbook of Dynamical Systems

Author: B. Fiedler

Publisher: Gulf Professional Publishing

Published: 2002-02-21

Total Pages: 1099

ISBN-13: 0080532845

DOWNLOAD EBOOK

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.