Conductive Polymers and Their Composites

Conductive Polymers and Their Composites

Author: Yanmin Wang

Publisher: Springer Nature

Published: 2022-10-21

Total Pages: 351

ISBN-13: 9811953635

DOWNLOAD EBOOK

This book provides a comprehensive overview on the recent significant advancements of conductive polymers and their composites in terms of conductive mechanism, fabrication strategies, important properties, and various promising applications. The corresponding knowledge was systematically compiled in the logical order and demonstrated as seven chapters. The special structure, influencing factors of the conductivity, the charge carrier transport model, the wettability and classical categories of the conductive polymers are narrated. Both conventional and novel strategies undertaken to fabricate the conductive polymers are introduced, as provided the overall master of the progress. In comparison with the bulk counterpart, nanostructured conductive polymers with different dimensions such as nanospheres, nano-networks, nanotubes and nanowire arrays are produced through distinct methods, thus presenting unique and distinct performance endowed by the nanometer scale. The combination of conductive polymers with other functional materials results in a number of the composites with improved properties by synergistic effect. The superior performance of conductive polymers and their composites greatly facilitates their development toward various important applications in the advanced and sophisticated fields such as biological utilization, energy storage and sensors. Due to their excellent biocompatibility, conductive polymers and their composites stand out to be useful in the biological field including tissue engineering, drug delivery and artificial muscle. To meet the urgent demand of the energy storage, conductive polymers and their composites play an important role in the devices including supercapacitors, solar cells and fuel cells. Finally, development of conductive polymers and their composites in the modern industry is greatly enhanced by their applications in smart sensors such as conductometric sensors, gravimetric sensors, optical sensors, chemical sensors and biosensors. This book has significant value for researchers, graduate students, and engineers carrying out the fundamental research or industrial production of conductive polymers and their composites.


Atomistic Simulations to Predict Semiconducting Polymer Blend Morphology Effect on Charge Transport

Atomistic Simulations to Predict Semiconducting Polymer Blend Morphology Effect on Charge Transport

Author: Puja Agarwala

Publisher:

Published: 2024

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Conjugated polymer blend morphology dictates performance of many organic electronic devices, including electrochemical transistors, light-emitting diodes, and solar cells. In organic photovoltaics (OPVs), electronically active layer morphology of polymer and oligomer bulk-heterojunction influences charge transport and exciton dissociation properties and governs device performance. Yet a faithful representation of the blend interface and local morphology is lacking. In principle, molecular dynamics simulation can represent these blends. However, semiconducting polymers with aromatic rings are large, stiff, and slowly relaxing, which makes equilibration challenging. We develop a new coarse-graining (CG) method, which improves simulation efficiency ten-fold by representing aromatic rings as rigidly bonded moieties, in which we represent several atoms as virtual sites. P3HT simulations with virtual site coarse graining show that the polymer persistence length and the melt density agrees with experimental results. An agreement between scattering extracted from P3HT simulations and wide-angle X-ray scattering experiment validates the simulation local morphology. In the amorphous phase, the scattering results in two wide peaks: the low q peak originates from interchain backbone correlations, and the high q peak originates from interchain side group correlations. We use the virtual site method to characterize the morphology of a typical OPV blend: P3HT (donor) and O-IDTBR (acceptor) and their pure phases. The blend morphology shows that moieties with solubilizing side-groups have fewer electronic contacts because of steric hindrance. On slow cooling, the fast simulation method enables us to observe crystallization, which occurs more readily in pure P3HT than in the blend. Simulations of a low molecular weight P3HT with O-IDTBR represent the local structures of small mixed regions. To describe a de-mixed blend interface, we need the Flory-Huggins [chi] parameter. We develop a "push-pull" technique to measure [chi], which applies robustly to polymer blends of any architecture. The method applies equal and opposite potentials to polymers in a blend to induce a concentration gradient, which is more pronounced for polymers with repulsive interactions ([chi]>0). Chain flexibility plays an important role as stiffer polymers require more energy to induce concentration gradient. We validate the method by blends of bead-spring chains with varying flexibility and PE/PEO blend. The [chi] evaluated from "push-pull'' methods are comparable to the results from previously developed "morphing'' method. We obtain a comprehensive view of the OPV blend morphology by combining local structures from our CG representation and the [chi] parameter from the "push-pull" technique. The [chi] calculated for a blend of P3HT and O-IDTBR shows that the blend follows an upper critical solution temperature behavior and predicts the critical molecular weight of P3HT for phase separation. An amorphous blend of P3HT and O-IDTBR forms an interface of a few nanometers. In contrast, the presence of a crystal acceptor crystallizes the donor polymer on its surface, forming a sharp interface. Crystallization reduces overall contact between donor and acceptor but increases face-on contact, which is important for exciton dissociation. O-IDTBR solubilized in P3HT may also aid in exciton dissociation; however, the polarons formed can not percolate to the acceptor rich region with only 15% solubility and may result in recombination losses. Much higher solubility is required for charge percolation to occur. However, increasing the acceptor solubility in the donor phase may cause crystal structure disruption. A polaron formed by exciton dissociation hops from one chain to another, and the polaron hopping rate depends on the electronic coupling between neighboring molecules governed by their local structures. Electronic coupling of a few thousand P3HT monomer pairs from an amorphous melt shows that strong contacts with high electronic coupling are rare. Feature selection in machine learning helps identify the most important feature for strong contact. The key geometric features closely relate to coherent overlap between HOMO wavefunctions on nearby moieties for hole transport. We develop a machine learning model to evaluate electronic coupling distribution with morphological changes. Slow cooling induces crystallization in P3HT and increases the number of strong contacts. Furthermore, we provide a future direction to understand the high performing organic photovoltaic blend morphology and relate the morphology to their electronic properties. The structure-property relationship will aid in developing rational design of conjugated polymers for efficient organic photovoltaic application.


Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Author: Srabanti Ghosh

Publisher: John Wiley & Sons

Published: 2021-03-16

Total Pages: 528

ISBN-13: 3527820108

DOWNLOAD EBOOK

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.


Morphology and Charge Transport in Conjugated Polymers

Morphology and Charge Transport in Conjugated Polymers

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

To assist rational compound design of organic semiconductors, two problems need to be addressed. First, the material morphology has to be known at an atomistic level. Second, with the morphology at hand, an appropriate charge transport model needs to be developed in order to link charge carrier mobility to structure.rnrnThe former can be addressed by generating atomistic morphologies using molecular dynamics simulations. However, the accessible range of time- and length-scales is limited. To overcome these limitations, systematic coarse-graining methods can be used. In the first part of the thesis, the Versatile Object-oriented Toolkit for Coarse-graining Applications is introduced, which provides a platform for the implementation of coarse-graining methods. Tools to perform Boltzmann inversion, iterative Boltzmann inversion, inverse Monte Carlo, and force-matching are available and have been tested on a set of model systems (water, methanol, propane and a single hexane chain). Advantages and problems of each specific method are discussed.rnrnIn partially disordered systems, the second issue is closely connected to constructing appropriate diabatic states between which charge transfer occurs. In the second part of the thesis, the description initially used for small conjugated molecules is extended to conjugated polymers. Here, charge transport is modeled by introducing conjugated segments on which charge carriers are localized. Inter-chain transport is then treated within a high temperature non-adiabatic Marcus theory while an adiabatic rate expression is used for intra-chain transport. The charge dynamics is simulated using the kinetic Monte Carlo method.rnrnThe entire framework is finally employed to establish a relation between the morphology and the charge mobility of the neutral and doped states of polypyrrole, a conjugated polymer. It is shown that for short oligomers, charge carrier mobility is insensitive to the orientational molecular ordering and is deter.


Elucidating Structural Effects of Conjugated Polymers on Charge Transport and Durability for Organic Electronics and Development of Stretchable Semiconducting Materials

Elucidating Structural Effects of Conjugated Polymers on Charge Transport and Durability for Organic Electronics and Development of Stretchable Semiconducting Materials

Author: Viktoria Pakhnyuk

Publisher:

Published: 2019

Total Pages: 101

ISBN-13:

DOWNLOAD EBOOK

Understanding structure-property relationships of [pi]-conjugated polymers is key to the development of functional materials for organic electronics. Molecular structure and polymer chain order strongly influence the electrical and mechanical performance of materials. First described is the theoretical and experimental quantification of polaron sizes in polythiophene polymers. Intramolecular and intermolecular charge delocalization length were studied to elucidate prior research relating polymer structure and packing morphology to electrical performance. Polythiophenes were also studied through the analysis of previously reported molecular dynamic simulations. Comparison of these models to experimental neutron scattering experiments revealed the requirement for updated parameters to accurately simulate polymer behavior. Polythiophenes are further described for the development of stretchable electronic materials. Improved compatibility in an elastomer/[pi]-conjugated polymer composite was achieved by the introduction of bromide functional groups. Functionalization led to altered intermolecular interactions and reactive covalent bonding which enhanced mechanical performance.


Structure and Electronic Property Relationships in Chemically Doped Semiconducting Polymers and Polymer Photovoltaics

Structure and Electronic Property Relationships in Chemically Doped Semiconducting Polymers and Polymer Photovoltaics

Author: Taylor Aubry-Komin

Publisher:

Published: 2019

Total Pages: 201

ISBN-13:

DOWNLOAD EBOOK

This work is focused on understanding how molecular-level structural control can improve charge carrier properties in -conjugated polymers. Conjugated polymers are characterized by extended conjugation along their backbone, making them intrinsically semiconducting materials that are of interest for a wide variety of flexible, thin-film electronic applications. Polymeric semiconductors possess advantages over inorganic materials such as being lightweight, low-cost and solution processable. However, due the disordered nature of conjugated polymers and their anisotropic transport, charge carrier dynamics can be highly sensitive to structural effects. The first chapter of this dissertation gives an introduction to conjugated polymers and their relevant applications as well as how tuning morphology and doping level can influence their charge carrier properties. The second introduces a technique, known as sequential processing (SqP), that affords control over polymer domain orientation when preparing polymer films as the active layer in optoelectronic devices. We show that conventional processing methods lead to disordered, isotropic polymer networks. By contrast, SqP can be used to preserve the preferred face-on chain orientation seen with some polymer materials, yielding advantages for photovoltaics and other devices via increased vertical hole mobility. Chapter 3 turns to molecular doping of conjugated polymers and studies the effects of a bulky boron cluster dopant used to modify the charge transport properties of conjugated polymers. The design of the dopant is such that it sterically protects core-localized electron density, resulting in shielding of the electron from holes produced on the polymer. This allows the charge carriers to be highly delocalized, as confirmed both spectroscopically and by AC-Hall effect measurements. The dopants allow for high carrier mobilities to be achieved even for non-crystalline polymers. The implication is that the counterion distance is the most important factor needed to produce high carrier mobility in conjugated polymers. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. In the last chapter, we study a series of boron cluster dopants in which the redox potential is tuned over a large range but the anion distance is fixed. This allows us to disentangle the effects of energetic offset in doping on the production of free carriers. We find that the redox potential not only affects the generation of free carriers, but also the infiltration of dopants into the polymer films.


Anomalous Charge Transport in Conjugated Polymers Reveals Underlying Mechanisms of Trapping and Percolation

Anomalous Charge Transport in Conjugated Polymers Reveals Underlying Mechanisms of Trapping and Percolation

Author:

Publisher:

Published: 2016

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transport on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.