With the clear writing and accessible approach that have made it the authoritative introduction to the field of molecular photosynthesis, this fully revised and updated edition now offers students and researchers cutting-edge topical coverage of bioenergy applications and artificial photosynthesis; advances in biochemical and genetic methods; as well as new analytical techniques. Chapters cover the origins and evolution of photosynthesis; carbon metabolism; photosynthetic organisms and organelles; and the basic principles of photosynthetic energy storage. The book's website includes downloadable PowerPoint slides.
“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.
Understanding how photosynthesis responds to the environment is crucial for improving plant production and maintaining biodiversity in the context of global change. Covering all aspects of photosynthesis, from basic concepts to methodologies, from the organelle to whole ecosystem levels, this is an integrated guide to photosynthesis in an environmentally dynamic context. Focusing on the ecophysiology of photosynthesis – how photosynthesis varies in time and space, responds and adapts to environmental conditions and differs among species within an evolutionary context – the book features contributions from leaders in the field. The approach is interdisciplinary and the topics covered have applications for ecology, environmental sciences, agronomy, forestry and meteorology. It also addresses applied fields such as climate change, biomass and biofuel production and genetic engineering, making a valuable contribution to our understanding of the impacts of climate change on the primary productivity of the globe and on ecosystem stability.
To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process of photosynthesis currently produces more than 100 billion tons of dry biomass annually, which equates to a global energy storage rate of ~100 TW. Recently, detailed structural information on the natural photosynthetic systems has been acquired at the molecular level, providing a foundation for comprehensive functional studies of the photosynthetic process. Likewise, sophisticated spectroscopic techniques have revealed important mechanistic details. Such accomplishments have made it possible for scientists and engineers to construct artificial systems for solar energy transduction that are inspired by their biological counterparts. The book contains articles written by experts and world leaders in their respective fields and summarizes the exciting breakthroughs toward understanding the structures and mechanisms of the photosynthetic apparatus as well as efforts toward developing revolutionary new energy conversion technologies. The topics/chapters will be organized in terms of the natural sequence of events occurring in the process of photosynthesis, while keeping a higher-order organization of structure and mechanism as well as the notion that biology can inspire human technologies. For example, the topic of light harvesting, will be followed by charge separation at reaction centers, followed by charge stabilization, followed by chemical reactions, followed by protection mechanisms, followed by other more specialized topics and finally ending with artificial systems and looking forward. As shown in the table of contents (TOC), the book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.
Aquatic Photosynthesis is a comprehensive guide to understanding the evolution and ecology of photosynthesis in aquatic environments. This second edition, thoroughly revised to bring it up to date, describes how one of the most fundamental metabolic processes evolved and transformed the surface chemistry of the Earth. The book focuses on recent biochemical and biophysical advances and the molecular biological techniques that have made them possible. In ten chapters that are self-contained but that build upon information presented earlier, the book starts with a reductionist, biophysical description of the photosynthetic reactions. It then moves through biochemical and molecular biological patterns in aquatic photoautotrophs, physiological and ecological principles, and global biogeochemical cycles. The book considers applications to ecology, and refers to historical developments. It can be used as a primary text in a lecture course, or as a supplemental text in a survey course such as biological oceanography, limnology, or biogeochemistry.
This book uses an array of different approaches to describe photosynthesis, ranging from the subjectivity of human perception to the mathematical rigour of quantum electrodynamics. This interdisciplinary work draws from fields as diverse as astronomy, agriculture, classical and quantum optics, and biology in order to explain the working principles of photosynthesis in plants and cyanobacteria.
Recent studies that analyze the impact of various plant traits on whole-plant growth and competitive ability have provided insights into the selective pressures on characteristics such as leaf reflectivity, effective leaf size, stomatal conductance, size of photosynthetic enzyme pools, crown form, xylem structure, nitrogen fixation, and root versus shoot allocation. This research has reached an exciting stage, leading to quantitative predictions of favoured trends in these traits as a function of environmental parameters and fundamental physiological constraints. Such results reveal the importance of ecological patterns in plant form and physiology, and of evolutionary constraints on photosynthesis and primary productivity. On the Economy of Plant Form and Function summarizes the major recent advances in the economic analysis of plant behavior and suggests a framework for a unified, quantitative approach to understanding photosynthetic adaptations, their integration with other aspects of plant form, and their relationship to carbon balance and ultimate limits on plant productivity.
This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.
In a world of increasing atmospheric CO2, there is intensified interest in the ecophysiology of photosynthesis and increasing attention is being given to carbon exchange and storage in natural ecosystems. We need to know how much photosynthesis of terrestrial and aquatic vegetation will change as global CO2 increases. Are there major ecosystems, such as the boreal forests, which may become important sinks of CO2 and slow down the effects of anthropogenic CO2 emissions on climate? Will the composition of the vegetation change as a result of CO2 increase? This volume reviews the progress which has been made in understanding photosynthesis in the past few decades at several levels of integration from the molecular level to canopy, ecosystem and global scales.