With the clear writing and accessible approach that have made it the authoritative introduction to the field of molecular photosynthesis, this fully revised and updated edition now offers students and researchers cutting-edge topical coverage of bioenergy applications and artificial photosynthesis; advances in biochemical and genetic methods; as well as new analytical techniques. Chapters cover the origins and evolution of photosynthesis; carbon metabolism; photosynthetic organisms and organelles; and the basic principles of photosynthetic energy storage. The book's website includes downloadable PowerPoint slides.
Green plants and photosynthetic organisms are the Earth's natural photoconverters of solar energy. In future, biomass and bioenergy will become increasingly significant energy sources, making a contribution both to carbon dioxide abatement and to the security, diversity and sustainability of global energy supplies. In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide fuel and useful chemicals for the benefit of man./a
Understanding how photosynthesis responds to the environment is crucial for improving plant production and maintaining biodiversity in the context of global change. Covering all aspects of photosynthesis, from basic concepts to methodologies, from the organelle to whole ecosystem levels, this is an integrated guide to photosynthesis in an environmentally dynamic context. Focusing on the ecophysiology of photosynthesis – how photosynthesis varies in time and space, responds and adapts to environmental conditions and differs among species within an evolutionary context – the book features contributions from leaders in the field. The approach is interdisciplinary and the topics covered have applications for ecology, environmental sciences, agronomy, forestry and meteorology. It also addresses applied fields such as climate change, biomass and biofuel production and genetic engineering, making a valuable contribution to our understanding of the impacts of climate change on the primary productivity of the globe and on ecosystem stability.
To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process of photosynthesis currently produces more than 100 billion tons of dry biomass annually, which equates to a global energy storage rate of ~100 TW. Recently, detailed structural information on the natural photosynthetic systems has been acquired at the molecular level, providing a foundation for comprehensive functional studies of the photosynthetic process. Likewise, sophisticated spectroscopic techniques have revealed important mechanistic details. Such accomplishments have made it possible for scientists and engineers to construct artificial systems for solar energy transduction that are inspired by their biological counterparts. The book contains articles written by experts and world leaders in their respective fields and summarizes the exciting breakthroughs toward understanding the structures and mechanisms of the photosynthetic apparatus as well as efforts toward developing revolutionary new energy conversion technologies. The topics/chapters will be organized in terms of the natural sequence of events occurring in the process of photosynthesis, while keeping a higher-order organization of structure and mechanism as well as the notion that biology can inspire human technologies. For example, the topic of light harvesting, will be followed by charge separation at reaction centers, followed by charge stabilization, followed by chemical reactions, followed by protection mechanisms, followed by other more specialized topics and finally ending with artificial systems and looking forward. As shown in the table of contents (TOC), the book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.
Aquatic Photosynthesis is a comprehensive guide to understanding the evolution and ecology of photosynthesis in aquatic environments. This second edition, thoroughly revised to bring it up to date, describes how one of the most fundamental metabolic processes evolved and transformed the surface chemistry of the Earth. The book focuses on recent biochemical and biophysical advances and the molecular biological techniques that have made them possible. In ten chapters that are self-contained but that build upon information presented earlier, the book starts with a reductionist, biophysical description of the photosynthetic reactions. It then moves through biochemical and molecular biological patterns in aquatic photoautotrophs, physiological and ecological principles, and global biogeochemical cycles. The book considers applications to ecology, and refers to historical developments. It can be used as a primary text in a lecture course, or as a supplemental text in a survey course such as biological oceanography, limnology, or biogeochemistry.
This book uses an array of different approaches to describe photosynthesis, ranging from the subjectivity of human perception to the mathematical rigour of quantum electrodynamics. This interdisciplinary work draws from fields as diverse as astronomy, agriculture, classical and quantum optics, and biology in order to explain the working principles of photosynthesis in plants and cyanobacteria.
Photosynthesis in Action examines the molecular mechanisms, adaptations and improvements of photosynthesis. With a strong focus on the latest research and advances, the book also analyzes the impact the process has on the biosphere and the effect of global climate change. Fundamental topics such as harvesting light, the transport of electronics and fixing carbon are discussed. The book also reviews the latest research on how abiotic stresses affect these key processes as well as how to improve each of them. This title explains how the process is flexible in adaptations and how it can be engineered to be made more effective. End users will be able to see the significance and potential of the processes of photosynthesis. Edited by renowned experts with leading contributors, this is an essential read for students and researchers interested in photosynthesis, plant science, plant physiology and climate change. - Provides essential information on the complex sequence of photosynthetic energy transduction and carbon fixation - Covers fundamental concepts and the latest advances in research, as well as real-world case studies - Offers the mechanisms of the main steps of photosynthesis together with how to make improvements in these steps - Edited by renowned experts in the field - Presents a user-friendly layout, with templated elements throughout to highlight key learnings in each chapter