The most complete fluorescent labeling and detection reference available, The Molecular Probes HandbookA Guide to Fluorescent Probes and Labeling Technologies contains over 3,000 technology solutions representing a wide range of biomolecular labeling and detection reagents. The significantly revised 11th Edition features extensive references, reorganized content, and new technical notes and product highlights.
Molecular Probes—Advances in Research and Application: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about ZZZAdditional Research in a concise format. The editors have built Molecular Probes—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about ZZZAdditional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Molecular Probes—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
This book describes insight mechanisms for designing molecular probes and methods that these agents can be used for medical diagnosis in preclinical animal models via optical, MRI and PET imaging. The book has a wealth of schemes of synthesis and methods deduced from pioneers in the field, making it possible to immerse into real-world molecular imaging. Written for graduate student training and practitioners, this book will serve as a teaching material and/or reference for anyone interested in exploring the power of chemical synthesis of imaging agents.
The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences. Molecular Evolution Producing the Biochemical Data part B is a continuation of methods published in Part A (1993, volume 224). The work is a very methodological look at markers, templates, genomes, datasets and analyses used in studies of biological diversity.* One of the most highly respected publications in the field of biochemistry since 1955 * Frequently consulted, and praised by researchers and reviewers alike * Truly an essential publication for anyone in any field of the life sciences
The use of fluorescent and luminescent probes to measure biological function has increased dramatically since publication of the First Edition due to their improved speed, safety, and power of analytical approach. This eagerly awaited Second Edition, also edited by Bill Mason, contains 19 new chapters and over two thirds new material, and is a must for all life scientists using optical probes.The contents include discussion of new optical methodologies for detection of proteins, DNA and other molecules, as well as probes for ions, receptors, cellular components, and gene expression. Emerging and advanced technologies for probe detection such as confocal laser scanning microscopy are also covered. This book will be essential for those embarking on work in the field or using new methods to enhance their research.TOPICS COVERED:* Single and multiphoton confocal microscopy* Applications of green fluorescent protein and chemiluminescent reporters to gene expression studies* Applications of new optical probes for imaging proteins in gels * Probes and detection technologies for imaging membrane potential in live cells* Use of optical probes to detect microorganisms* Raman and confocal raman microspectroscopy* Fluorescence lifetime imaging microscopy* Digital CCD cameras and their application in biological microscopy
Aiding researchers seeking to eliminate multi-step procedures, reduce delays in treatment and ease patient care, Cancer Theranostics reviews, assesses, and makes pertinent clinical recommendations on the integration of comprehensive in vitro diagnostics, in vivo molecular imaging, and individualized treatments towards the personalization of cancer treatment. Cancer Theranostics describes the identification of novel biomarkers to advance molecular diagnostics of cancer. The book encompasses new molecular imaging probes and techniques for early detection of cancer, and describes molecular imaging-guided cancer therapy. Discussion also includes nanoplatforms incorporating both cancer imaging and therapeutic components, as well as clinical translation and future perspectives. - Supports elimination of multi-step approaches and reduces delays in treatments through combinatorial diagnosis and therapy - Fully assesses cancer theranostics across the emergent field, with discussion of biomarkers, molecular imaging, imaging guided therapy, nanotechnology, and personalized medicine - Content bridges laboratory, clinic, and biotechnology industries to advance biomedical science and improve patient management
Personalized medicine employing patient-based tailor-made therapeutic drugs is taking over treatment paradigms in a variety of ?elds in oncology and the central nervous system. The success of such therapies is mainly dependent on ef?cacious therapeutic drugs and a selective imaging probe for identi?cation of potential responders as well as therapy monitoring for an early bene?t assessment. Molecular imaging (MI) is based on the selective and speci?c interaction of a molecular probe with a biological target which is visualized through nuclear, magnetic resonance, near infrared or other methods. Therefore it is the method of choice for patient selection and therapy monitoring as well as for speci?c e- point monitoring in modern drug development. PET (positron emitting tomography), a nuclear medical imaging modality, is ideally suited to produce three-dimensional images of various targets or processes. The rapidly increasing demand for highly selective probes for MI strongly pushes the development of new PET tracers and PET chemistry. ‘PET chemistry’ can be de?ned as the study of positron-emitting compounds regarding their synthesis, structure, composition, reactivity, nuclear properties and processes and their properties in natural and - natural environments. In practice PET chemistry is strongly in?uenced by the unique properties of the radioisotopes used (e. g. , half-life, che- cal reactivity, etc. ) and integrates scienti?c aspects of nuclear-, organic-, inorganic- and biochemistry.
Entries A to Z covering the following items: 1. Molecular imaging.- 2. Contrast media iodinated barium magnetic resonance ultrasound.- 3. Nuclear medicine.- 4. Pathology.- 5. Infectious diseases.- Organ systems: 1. Breast.- 2. Cardiac.- 3. Chest.- 4. Hepatobiliary/gastrointestinal (liver, spleen, pancreas).- 5. Gastroentestinal (liver, spleen and pancreas excluded).- 6. Head and neck I 7. Musculoskeletal.- 8. Neuro: a. Brain, b. Spine.- 9. Pediatric.- 10. Urogenital:a. Uro, b. Genital.- 11. Vascular (and vascular intervention).
"Molecular Imaging: Fundamentals and Applications" is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book. Jie Tian is a professor at the Institute of Automation, Chinese Academy of Sciences, China.