Industrial Applications of Molecular Simulations

Industrial Applications of Molecular Simulations

Author: Marc Meunier

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 413

ISBN-13: 1439861021

DOWNLOAD EBOOK

The field of quantum and molecular simulations has experienced strong growth since the time of the early software packages. A recent study, showed a large increase in the number of people publishing papers based on ab initio methods from about 3,000 in 1991 to roughly 20,000 in 2009, with particularly strong growth in East Asia. Looking to the futu


Membrane Materials for Gas and Separation

Membrane Materials for Gas and Separation

Author: Yuri Yampolskii

Publisher: John Wiley & Sons

Published: 2017-03-20

Total Pages: 122

ISBN-13: 1119112710

DOWNLOAD EBOOK

Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both. Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Computer Simulation of Polymeric Materials

Computer Simulation of Polymeric Materials

Author: Japan Association for Chemical Innovation

Publisher: Springer

Published: 2016-07-30

Total Pages: 391

ISBN-13: 9811008159

DOWNLOAD EBOOK

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.


Modeling and Simulation in Polymers

Modeling and Simulation in Polymers

Author: Purushottam D. Gujrati

Publisher: John Wiley & Sons

Published: 2010-03-30

Total Pages: 564

ISBN-13: 9783527630264

DOWNLOAD EBOOK

Filling a gap in the literature and all set to become the standard in this field, this monograph begins with a look at computational viscoelastic fluid mechanics and studies of turbulent flows of dilute polymer solutions. It then goes on discuss simulations of nanocomposites, polymerization kinetics, computational approaches for polymers and modeling polyelectrolytes. Further sections deal with tire optimization, irreversible phenomena in polymers, the hydrodynamics of artificial and bacterial flagella as well as modeling and simulation in liquid crystals. The result is invaluable reading for polymer and theoretical chemists, chemists in industry, materials scientists and plastics technologists.


The Physics of Deformation and Fracture of Polymers

The Physics of Deformation and Fracture of Polymers

Author: A. S. Argon

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 535

ISBN-13: 0521821843

DOWNLOAD EBOOK

A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.


Atomistic Modeling of Materials Failure

Atomistic Modeling of Materials Failure

Author: Markus J. Buehler

Publisher: Springer Science & Business Media

Published: 2008-08-07

Total Pages: 547

ISBN-13: 0387764267

DOWNLOAD EBOOK

This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.