Molecular Microbial Ecology of the Rhizosphere covers current knowledge on the molecular basis of plant-microbe interactions in the rhizosphere. Also included in the book are both reviews and research-based chapters describing experimental materials and methods. Edited by a leader in the field, with contributions from authors around the world, Molecular Microbial Ecology of the Rhizosphere brings together the most up-to-date research in this expanding area, and will be a valuable resource for molecular microbiologists and plant soil scientists, as well as upper level students in microbiology, ecology, and agriculture.
The premiere two-volume reference on revelations from studying complex microbial communities in many distinct habitats Metagenomics is an emerging field that has changed the way microbiologists study microorganisms. It involves the genomic analysis of microorganisms by extraction and cloning of DNA from a group of microorganisms, or the direct use of the purified DNA or RNA for sequencing, which allows scientists to bypass the usual protocol of isolating and culturing individual microbial species. This method is now used in laboratories across the globe to study microorganism diversity and for isolating novel medical and industrial compounds. Handbook of Molecular Microbial Ecology is the first comprehensive two-volume reference to cover unculturable microorganisms in a large variety of habitats, which could not previously have been analyzed without metagenomic methodology. It features review articles as well as a large number of case studies, based largely on original publications and written by international experts. This second volume, Metagenomics in Different Habitats, covers such topics as: Viral genomes Metagenomics studies in a variety of habitats, including marine environments and lakes, soil, and human and animal digestive tracts Other habitats, including those involving microbiome diversity in human saliva and functional intestinal metagenomics; diversity of archaea in terrestrial hot springs; and microbial communities living at the surface of building stones Biodegradation Biocatalysts and natural products A special feature of this book is the highlighting of the databases and computer programs used in each study; they are listed along with their sites in order to facilitate the computer-assisted analysis of the vast amount of data generated by metagenomic studies. Such studies in a variety of habitats are described here, which present a large number of different system-dependent approaches in greatly differing habitats. Handbook of Molecular Microbial Ecology II is an invaluable reference for researchers in metagenomics, microbial ecology, microbiology, and environmental microbiology; those working on the Human Microbiome Project; microbial geneticists; and professionals in molecular microbiology and bioinformatics.
The fourth edition of Soil Microbiology, Ecology and Biochemistry updates this widely used reference as the study and understanding of soil biota, their function, and the dynamics of soil organic matter has been revolutionized by molecular and instrumental techniques, and information technology. Knowledge of soil microbiology, ecology and biochemistry is central to our understanding of organisms and their processes and interactions with their environment. In a time of great global change and increased emphasis on biodiversity and food security, soil microbiology and ecology has become an increasingly important topic. Revised by a group of world-renowned authors in many institutions and disciplines, this work relates the breakthroughs in knowledge in this important field to its history as well as future applications. The new edition provides readable, practical, impactful information for its many applied and fundamental disciplines. Professionals turn to this text as a reference for fundamental knowledge in their field or to inform management practices. - New section on "Methods in Studying Soil Organic Matter Formation and Nutrient Dynamics" to balance the two successful chapters on microbial and physiological methodology - Includes expanded information on soil interactions with organisms involved in human and plant disease - Improved readability and integration for an ever-widening audience in his field - Integrated concepts related to soil biota, diversity, and function allow readers in multiple disciplines to understand the complex soil biota and their function
Diese Enzyklopädie konzentriert sich einzig und allein auf Biokolloide und Biogrenzflächen. Hauptthema sind nicht die wissenschaftlichen Aspekte rund um Kolloide und Grenzflächen. Mit Biokolloiden und Biogrenzflächen beschäftigen sich immer mehr Wissenschaftler, und in dieser Enzyklopädie werden zur Untersuchung von Phänomen in biologischen Systemen "weiche Partikel" und "weiche Grenzflächen" als Oberflächenmodelle herangezogen. - Beschreibt detailliert die grundlegenden Theorien und erläutert die physikalisch-chemischen und theoretischen Aspekte der Biokolloid- und Biogrenzflächenwissenschaft. - Beinhaltet auch eine ausführliche Beschreibung der weichen Grenzflächen und Oberflächen - Beschäftigt sich ebenfalls mit Anwendungen der Grundlagentheorien von Biokolloiden und Biogrenzflächen auf die Nano-, Bio- und Umweltwissenschaften. Ein nützliches Nachschlagewerk genau zur richtigen Zeit, für Forscher und Absolventen im Bereich der Biokolloid- und Biogrenzflächenwissenschaft sowie für Ingenieure der Fachrichtungen.
Molecular Microbial Ecology of the Rhizosphere covers current knowledge on the molecular basis of plant-microbe interactions in the rhizosphere. Also included in the book are both reviews and research-based chapters describing experimental materials and methods. Edited by a leader in the field, with contributions from authors around the world, Molecular Microbial Ecology of the Rhizosphere brings together the most up-to-date research in this expanding area, and will be a valuable resource for molecular microbiologists and plant soil scientists, as well as upper level students in microbiology, ecology, and agriculture.
"Molecular Microbial Ecology of the Rhizosphere covers current knowledge on the molecular basis of plant-microbe interactions in the rhizosphere. Also included in the book are both reviews and research-based chapters describing experimental materials and methods. Edited by a leader in the field, with contributions from authors around the world, Molecular Microbial Ecology of the Rhizosphere brings together the most up-to-date research in this expanding area, and will be a valuable resource for molecular microbiologists and plant soil scientists, as well as upper level students in microbiology, ecology, and agriculture."--Publisher's description.
Biochar Application: Essential Soil Microbial Ecology outlines the cutting-edge research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics, as well as the microbial ecology of biochar application to soil, the use of different phyto-chemical analyses, possibilities for future research, and recommendations for climate change policy. Biochar, or charcoal produced from plant matter and applied to soil, has become increasingly recognized as having the potential to address multiple contemporary concerns, such as agricultural productivity and contaminated ecosystem amelioration, primarily by removing carbon dioxide from the atmosphere and improving soil functions. Biochar Application is the first reference to offer a complete assessment of the various impacts of biochar on soil and ecosystems, and includes chapters analyzing all aspects of biochar technology and application to soil, from ecogenomic analyses and application ratios to nutrient cycling and next generation sequencing. Written by a team of international authors with interdisciplinary knowledge of biochar, this reference will provide a platform where collaborating teams can find a common resource to establish outcomes and identify future research needs throughout the world. - Includes multiple tables and figures per chapter to aid in analysis and understanding - Includes a comprehensive table of the methods used within the contents, ecosystems, contaminants, future research, and application opportunities explored in the book - Includes knowledge gaps and directions of future research to stimulate further discussion in the field and in climate change policy - Outlines the latest research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics - Offers an assessment of the impacts of biochar on soil and ecosystems
An evolving, living organic/inorganic covering, soil is in dynamic equilibrium with the atmosphere above, the biosphere within, and the geology below. It acts as an anchor for roots, a purveyor of water and nutrients, a residence for a vast community of microorganisms and animals, a sanitizer of the environment, and a source of raw materials for co
Sustainable Agriculture: Advances in Plant Metabolome and Microbiome focuses on the advancement of basic and applied research related to plant-microbe interaction and their implementation in progressive agricultural sustainability. The book also highlights the developing area of bioinformatics tools for the interpretation of metabolome, the integration of statistical and bioinformatics tools to manage huge generating data, metabolite profiling, and key signaling-driven substances, along with a section on the role of key biosynthetic pathways. Focused on selecting positive and effective interactive core-microbiome which will be adaptive and sustainable, this book will help researchers further improve the quality and productivity of crops through sustainable agriculture. Details the two-way interactive approach to both plants and microbes Describes setting up core and functional microbiomes Presents the relationship of metabolomics and biocontrol
Microorganisms are a good indicator of soil health. Plant growth-promoting microorganisms protect plants from the stresses of water, salt, metal, biotic, and so on, and are well known for strategically modulating the plant mechanisms to defend and mitigate environmental stresses. Taking a multidisciplinary approach, this volume explores the role of plant microorganisms in ecological and agricultural revitalization beyond normal agriculture practices and offers practical and applied solutions for the restoration of degraded lands to fulfill human needs with food, fodder, fuel, and fiber. It also provides a single comprehensive platform for soil scientists, agriculture specialists, ecologists, and those in related disciplines. Features • Presents cutting-edge microbial biotechnology as a tool for restoring degraded lands • Explores the aspects of sustainable development of degraded lands using microorganism-inspired land remediation • Highlights sustainable food production intensification in nutrient-poor lands through innovative use of microbial inoculants • Explains the remediation of polluted land for regaining biodiversity and achieving United Nations Sustainable Development Goals • Includes many real-life applications from South Asia offering solutions to today’s agricultural problems This book will be of interest to professionals, researchers, and students in environmental, soil, and agricultural sciences as well as stakeholders, policy makers, and practitioners with an interest in this field.