Milestone Report

Milestone Report

Author:

Publisher:

Published: 2016

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT binding energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO2, ThO2, UO2 and PuO2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO2 as well as advanced MOX fuels.


Report on Simulation of Fission Gas and Fission Product Diffusion in UO2

Report on Simulation of Fission Gas and Fission Product Diffusion in UO2

Author:

Publisher:

Published: 2016

Total Pages: 25

ISBN-13:

DOWNLOAD EBOOK

In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel-clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving XeU3O cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the XeU3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the XeU3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.


Multiscale Simulation of Thermo-Mechanical Processes in Irradiated Fission-Reactor Materials

Multiscale Simulation of Thermo-Mechanical Processes in Irradiated Fission-Reactor Materials

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This research characterized, by atomic level molecular dynamics (MD) simulations, the early stage aggregation of the fission product xenon in a model uranium oxide nuclear fuel matrix that contributes to the long term bubble formation mechanisms that compromise the efficiency and lifetime of nuclear fuels. These atomic level computer simulations disclosed a previously unknown pre-coarsening phenomenon in which the clustering of xenon is driven by vacancy diffusion. These key findings are to be included in higher level simulations of nuclear fuel thermo-mechanical processes that model irradiation effects within nuclear fuels. Previous multiscale models did not include these early time pre-coarsened clusters that occur in the nanosecond regime and therefore will lead to a better understanding of bubble formation in nuclear fuels.


Microstructurally Explicit Simulation of the Transport Behavior in Uranium Dioxide

Microstructurally Explicit Simulation of the Transport Behavior in Uranium Dioxide

Author: Harn Chyi Lim

Publisher:

Published: 2014

Total Pages: 184

ISBN-13:

DOWNLOAD EBOOK

Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB) at low burnups. Early fission gas release models, which assumed spherical grains with no effect of GB diffusion, did not capture the early stage of the release behavior well. In order to understand the phenomenon at low burnup and how it leads to the later release mechanism, a microstructurally explicit model is needed. This dissertation conducted finite element simulations of the transport behavior using 3-D microstructurally explicit models. It looks into the effects of GB character, with emphases on conditions that can lead to enhanced effective diffusion. Moreover, the relationship between temperature and fission product transport is coupled to reflect the high temperature environment. The modeling work began with 3-D microstructure reconstruction for three uranium oxide samples with different oxygen stoichiometry: UO2.00 UO2.06 and UO2.14. The 3-D models were created based on the real microstructure of depleted UO2 samples characterized by Electron Backscattering Diffraction (EBSD) combined with serial sectioning. Mathematical equations on fission gas diffusion and heat conduction were studied and derived to simulate the fission gas transport under GB effect. Verification models showed that 2-D elements can be used to model GBs to reduce the number of elements. The effect of each variable, including fuel stoichiometry, temperature, GB diffusion, triple junction diffusion and GB thermal resistance, is verified, and they are coupled in multi-physics simulations to study the transport of fission gas at different radial location of a fuel pellet. It was demonstrated that the microstructural model can be used to incorporate the effect of different physics to study fission gas transport. The results suggested that the GB effect is the most significant at the edge of fuel pellet where the temperature is the lowest. In the high temperature region, the increase in bulk diffusivity due to excess oxygen diminished the effect of GB diffusion.


Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide

Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide

Author: Masato Kato

Publisher: CRC Press

Published: 2022-10-17

Total Pages: 183

ISBN-13: 1000686000

DOWNLOAD EBOOK

Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide offers a deep understanding of MOX properties for nuclear fuels that will be useful for performance evaluation. It also reviews fuel property simulation technology and an irradiation behavior model required for performance evaluation. Based on research findings, the book investigates various physical property data in order to develop MOX fuel for sodium-cooled fast reactors. It discusses a database of MOX properties, including oxygen potential, melting temperature, the lattice parameter, sound speeds, thermal expansion, thermal diffusivity, oxygen self-diffusion, and chemical diffusion coefficients, that was used to derive a science-based model of MOX properties (Sci-M Pro) for fuel-performance code development. Features: Concisely covers the essential aspects of MOX nuclear fuels. Explores MOX nuclear fuels by systematically evaluating various physical property values using a behavior model. Presents fuel property simulation technology. Considers oxygen potential, the lattice parameter, sound speeds, and oxygen self-diffusion. Discusses melting temperature, thermal expansion, thermal diffusivity, and chemical diffusion coefficients. The book will be useful for researchers and engineers working in the field of nuclear fuels and nuclear materials.


Fission Gas Bubble Behavior in Uranium Carbide

Fission Gas Bubble Behavior in Uranium Carbide

Author: Christopher Matthews

Publisher:

Published: 2015

Total Pages: 183

ISBN-13:

DOWNLOAD EBOOK

The need for cheap reliable energy, while simultaneously avoiding uranium supply constraints makes uranium carbide (UC) fueled Gas Fast Reactors offer an attractive nuclear reactor design. In order to qualify the fuel, an enhanced understanding of the behavior of uranium carbide during operation is paramount. Due to a reduced re-solution rate, uranium carbide suffers from a buildup of very large fission gas bubbles. While these bubbles serve to reduce total fission gas release through the trapping of diffusing gas atoms, they lead to high swelling and ultimately dominate the microstructure of the fuel. The bubble size distribution is determined by the competing absorption rate and the rate of knock-out, or re-solution. As a result of the enhanced thermal dissipative properties of uranium carbide fuel, the atom-by-atom knockout process was shown to be an accurate representation of re-solution in uranium carbide. Furthermore, the Binary Collision Approximation was shown to appropriately model the re-solution event, bypassing computationally expensive Molecular Dynamics simulations. The code 3DOT was developed as an off-shoot of the code 3DTrim, both of which utilize the TRIM algorithm to calculate the kinematics of ions traveling through a material. Benefiting from modern methods and enhanced computational power, the model created in 3DOT results in a more fundamental understanding of the re-solution process in uranium carbide. A re-solution parameter that was an order of magnitude lower than previously determined was cal- culated in 3DOT. A decrease in the re-solution parameter as a function of radius occurred for low bubble radii, with a nearly constant re-solution parameter for bubble radii above 50 nm. Through comparative studies on the re-solution parameter for various values of implantation energy and atomic density in the bubble, we found that while the re-solution parameter did change slightly, the overall shape did not. A new application, BUCK, was built using the MOOSE framework to simulate the fission gas bubble concentration distribution. In order to build a bare-bones foundation, the simplistic yet historically prevalent physics that can be used to model fission gas bubble nucleation, growth, and knock-out were implemented as stepping stones until more advanced models for each physical process can be created. As the first step towards models that are based on first-principles, the new re-solution parameter was included and tested within BUCK. BUCK was tested using different parameters and behaved normally. However, from studies using representative simulation parameters, it is clear that the currently implemented theory does not adequately identify the growth mechanism that leads to larger bubbles. While this currently limits the applicability of BUCK in a full fuel pin calculation, it provides the baseline structure in which new physics can be implemented, and represents an important step towards understanding the complex behavior of fission gas bubbles.