In the past 15-20 years major discoveries have been concluded on potato biology and biotechnology. Important new tools have been developed in the area of molecular genetics, and our understanding of potato physiology has been revolutionized due to amenability of the potato to genetic transformation. This technology has impacted our understanding of the molecular basis of plant-pathogen interaction and has also opened new opportunities for the use of the potato in a variety of non-food biotechnological purposes. This book covers the potato world market as it expands further into the new millennium. Authors stress the overriding need for stable yields to eliminate human hunger and poverty, while considering solutions to enhance global production and distribution. It comprehensively describes genetics and genetic resources, plant growth and development, response to the environment, tuber quality, pests and diseases, biotechnology and crop management. Potato Biology is the most valuable reference available for all professionals involved in the potato industry, plant biologists and agronomists. - Offers an understanding of the social, economic and market factors that influence production and distribution - Discusses developments and useful traits in transgenic biology and genetic engineering - The first reference entirely devoted to understanding new advances in potato biology and biotechnology
This book gathers the latest information on the organization of genomes in wild Solanum species and emphasizes how this information is yielding direct outcomes in the fields of molecular breeding, as well as a better understanding of both the patterns and processes of evolution. Cultivated Solanums, such as potato, tomato, and pepper, possess a high number of wild relatives that are of great importance for practical breeding and evolutionary studies. Their germplasm is often characterized by allelic diversity, as well as genes that are lacking in the cultivated species. Wild Solanums have not been fully exploited by breeders. This is mainly due to the lack of information regarding their genetics and genomics. However, the genome of important cultivated Solanaceae such as potato, tomato, eggplant, and pepper has already been sequenced. On the heels of these recent developments, wild Solanum genomes are now becoming available, opening an exciting new era for both basic research and varietal development in the Solanaceae.
Developments in potato chemistry, including identification and use of the functional components of potatoes, genetic improvements and modifications that increase their suitability for food and non-food applications, the use of starch chemistry in non-food industry and methods of sensory and objective measurement have led to new and important uses for this crop. Advances in Potato Chemistry and Technology presents the most current information available in one convenient resource.The expert coverage includes details on findings related to potato composition, new methods of quality determination of potato tubers, genetic and agronomic improvements, use of specific potato cultivars and their starches, flours for specific food and non-food applications, and quality measurement methods for potato products. - Covers potato chemistry in detail, providing key understanding of the role of chemical compositions on emerging uses for specific food and non-food applications - Presents coverage of developing areas, related to potato production and processing including genetic modification of potatoes, laboratory and industry scale sophistication, and modern quality measurement techniques to help producers identify appropriate varieties based on anticipated use - Explores novel application uses of potatoes and potato by-products to help producers identify potential areas for development of potato variety and structure
This comprehensive and interdisciplinary handbook provides a bird’s-eye view of two centuries of research on secondary metabolites of the two large Solanales families, Solanaceae and Convolvulaceae. In this book they’re arranged according to their biosynthetic principles, while the occurrence and chemical structures of almost all known individual secondary metabolites are covered, which are found in hundreds of wild as well as cultivated solanaceous and convolvulaceous species.
Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies is an outstanding collection of current research that integrates basic and advanced concepts of agricultural biotechnology with future development prospects. Using biotechnology with sustainable agriculture effectively contributes to gains in agricultural productivity, enhanced food security, reduced poverty and malnutrition, and more ecologically sustainable means of food production. Written by a panel of experts, this book is unique in its coverage of the broad area of biotechnology for sustainable agriculture. It includes intriguing topics and discussions of areas such as recombinant DNA technology and genetic engineering. - Identifies and explores biotechnological tools to enhance sustainability - Encompasses plant and microbial biotechnology, nanotechnology and genetic engineering - Focuses on plant biotechnology and crop improvement to increase yield and resilience - Summarizes the impact of climate change on agriculture, fisheries and livestock
Horticultural Plant Breeding is a complete and comprehensive resource for the development of new cultivars or clones of horticultural crops. It covers the basic theories that underpin plant breeding and applies Mendelian, quantitative and population inheritance practices in smaller populations where the individual plant has high value. Specific traditional breeding methods are also covered, with an emphasis on how these methods are adapted for horticultural species. In addition, the integration of biotechnologies with traditional breeding methodologies is explored, with an emphasis on specific applications for fruits, vegetables and ornamental crop species. Presented in focused sections, Horticultural Plant Breeding addresses historical perspectives and context, and genetics as a critical foundation of plant breeding. It highlights treatments of the various components of breeding programs, such as breeding objectives, germplasm, population engineering, mating systems, enhanced selection methods, established breeding methods applicable to inbreeding and outcrossing situations, and post-breeding activities. - Provides a complete and comprehensive resource for those involved in the development of new cultivars or clones of horticultural crops - Guides readers to the most appropriate breeding strategy including potential integration of traditional and biotechnology strategies that will best achieve a cost-effective outcome - Will include access to 20 narrated slide sets to facilitate additional understanding
Potato improvement by traditional breeding and opprotunities for new technologies; Ac-Ds trasposons mapped near disease resistance loci for targeted tagging in potato; Studies to enhance starch biosynthesis by manipulation of ADP-glucose pyrophsphorylase genes; Control of carbohydrate metabolism in potato tubers; Transgenic potatoes changed in carbohidrate partitioning and allocation; Control of sugar balance in potato tubers; Post-harvest regulation of sucrose accumulation in transgenic potatoes: role and properties of potato tuver UDP-glucose pyrophosphorylase; Post-harvest potato tuver glycerolipid; Functionality of semi-artificial trasnit peptides encoded by gene constructs derived form hte potato gene for granule-bound starch synthase; Potato alternative oxidase: detection of mRNA by PCR and tissue-specific differences in the protein levels; Polyphenol oxidase in potato tubers; Gene expression during early tuber development; Use of ubiquitin promoters for transgene; Regulation of translation in potato tubers in response to environmental stress; Expression of the Brasil nut methuibube-rich protein in transgenic potato plants; Strategies towards introducing resistance to bacterial pathogens in transgenic potatoes; Field performance of transgenic potatoes; Analysis of containment and food safety issues associated with the release of transgenic potatoes.
Genetic Control of Malaria and Dengue focuses on the knowledge, technology, regulation and ethics of using genetically modified mosquitoes to interrupt the transmission of important vector-borne diseases including Malaria. It contains coverage of the current state of knowledge of vector-borne diseases and how they are currently controlled; vaccine, drug and insecticide development; various strategies for altering the genome of mosquitoes in beneficial ways; and the regulatory, ethical and social environment concerning these strategies. For more than five decades, the prospect of using genetically-modified mosquitoes to control vector-borne disease transmission has been a purely hypothetical scenario. We simply did not have the technology or basic knowledge to be able to do it. With the explosion of field trials and potential interventions in development, Genetic Control of Malaria and Dengue provides a comprehensive overview of research in genetics, microbiology, virology, and ecology involved in the development and implementation of genetic modification programs for virus and disease control. This book is meant to provide a practical guide to researchers, regulators and the general public about how this technology actually works, how it can be improved, and what is still unknown. - Includes coverage of vectorial capacity, critical to understanding vector-borne disease transmission - Provides a summary of the concepts of both population suppression and population replacement - Contains pivotal coverage of ethical and ecological ramifications of genetics-based control strategies