Moduli of Abelian Varieties

Moduli of Abelian Varieties

Author: Gerard van der Geer

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 526

ISBN-13: 303488303X

DOWNLOAD EBOOK

Abelian varieties and their moduli are a topic of increasing importance in today`s mathematics, applications ranging from algebraic geometry and number theory to mathematical physics. This collection of 17 refereed articles originates from the third "Texel Conference" held in 1999. Leading experts discuss and study the structure of the moduli spaces of abelian varieties and related spaces, giving an excellent view of the state of the art in this field.


Moduli of Supersingular Abelian Varieties

Moduli of Supersingular Abelian Varieties

Author: Ke-Zheng Li

Publisher: Springer

Published: 2006-11-14

Total Pages: 123

ISBN-13: 3540696660

DOWNLOAD EBOOK

Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).


Degeneration of Abelian Varieties

Degeneration of Abelian Varieties

Author: Gerd Faltings

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 328

ISBN-13: 3662026325

DOWNLOAD EBOOK

A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.


Compactifying Moduli Spaces for Abelian Varieties

Compactifying Moduli Spaces for Abelian Varieties

Author: Martin C. Olsson

Publisher: Springer Science & Business Media

Published: 2008-08-25

Total Pages: 286

ISBN-13: 354070518X

DOWNLOAD EBOOK

This volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the more classical approach using toroical embeddings, which are not canonical. There are two main new contributions in this monograph: (1) The introduction of logarithmic geometry as understood by Fontaine, Illusie, and Kato to the study of degenerating Abelian varieties; and (2) the construction of canonical compactifications for moduli spaces with higher degree polarizations based on stack-theoretic techniques and a study of the theta group.


Complex Abelian Varieties

Complex Abelian Varieties

Author: Herbert Lange

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 443

ISBN-13: 3662027887

DOWNLOAD EBOOK

Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.


Complex Tori and Abelian Varieties

Complex Tori and Abelian Varieties

Author: Olivier Debarre

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 124

ISBN-13: 9780821831656

DOWNLOAD EBOOK

This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories. Complex tori are ideal in this respect: One can perform "hands-on" computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry. Information for our distributors: SMF members are entitled to AMS member discounts.


Moduli of Abelian Varieties

Moduli of Abelian Varieties

Author: Allan Adler

Publisher: Springer

Published: 2006-11-14

Total Pages: 205

ISBN-13: 3540496092

DOWNLOAD EBOOK

This is a book aimed at researchers and advanced graduate students in algebraic geometry, interested in learning about a promising direction of research in algebraic geometry. It begins with a generalization of parts of Mumford's theory of the equations defining abelian varieties and moduli spaces. It shows through striking examples how one can use these apparently intractable systems of equations to obtain satisfying insights into the geometry and arithmetic of these varieties. It also introduces the reader to some aspects of the research of the first author into representation theory and invariant theory and their applications to these geometrical questions.


The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves

Author: Joseph H. Silverman

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 414

ISBN-13: 1475719205

DOWNLOAD EBOOK

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.


Arithmetic Compactifications of PEL-type Shimura Varieties

Arithmetic Compactifications of PEL-type Shimura Varieties

Author: Kai-Wen Lan

Publisher: Princeton University Press

Published: 2013-03-24

Total Pages: 587

ISBN-13: 0691156549

DOWNLOAD EBOOK

By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).


O-Minimality and Diophantine Geometry

O-Minimality and Diophantine Geometry

Author: G. O. Jones

Publisher: Cambridge University Press

Published: 2015-08-13

Total Pages: 235

ISBN-13: 1107462495

DOWNLOAD EBOOK

This book brings the researcher up to date with recent applications of mathematical logic to number theory.