Illustrating the concepts of modern physics and quantum mechanics needed for R&D into semiconductors, this textbook first provides the necessary background before going on to cover condensed matter and semiconductors, and how to develop them. Throughout, it emphasizes the development of ideas and concepts and how they are interrelated, deepening an understanding of the concepts by way of repetition. Written with clarity and style in mind, the text covers such new technology as junctions, luminescence, and 3D quantum dots, and each chapter ends with 20-30 exercises.
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
Modern Semiconductor Quantum Physics has the following constituents: (1) energy band theory: pseudopotential method (empirical and ab initio); density functional theory; quasi-particles; LCAO method; k.p method; spin-orbit splitting; effect mass and Luttinger parameters; strain effects and deformation potentials; temperature effects. (2) Optical properties: absorption and exciton effect; modulation spectroscopy; photo luminescence and photo luminescence excitation; Raman scattering and polaritons; photoionization. (3) Defects and Impurities: effective mass theory and shallow impurity states; deep state cluster method, super cell method, Green's function method; carrier recombination kinetics; trapping transient measurements; electron spin resonance; electron lattice interaction and lattice relaxation effects; multi-phonon nonradiative recombination; negative U center, DX center and EL2 Defects. (4) Semiconductor surfaces: two dimensional periodicity and surface reconstruction; surface electronic states; photo-electron spectroscopy; LEED, STM and other experimental methods. (5) Low-dimensional structures: Heterojunctions, quantum wells; superlattices, quantum-confined Stark effect and Wannier-Stark ladder effects; resonant tunneling, quantum Hall effect, quantum wires and quantum dots.This book can be used as an advanced textbook on semiconductor physics for graduate students in physics and electrical engineering departments. It is also useful as a research reference for solid state scientists and semiconductor device engineers.
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
Provides a modern introduction to semiconductor physics, presentingthe basic information necessary to understand semiconductors, alongwith some of the latest theories and developments. Based on theauthor's undergraduate course, this book bridges the gap betweenbasic subjects such as quantum mechanics and Maxwell's equationsand the fundamental processes determining the behaviour ofsemiconductors. Following a quantum mechanics approach this text ispredominantly aimed at scientists rather then engineers, and formsthe basis for the understanding of modern mesoscopic physics insemiconductors and quantum devices like resonant tunnelingdiodes. Rather than attempting to comprehensively cover all aspects ofsemiconductor physics, this text aims to cover the most importantand interesting aspects of this subject to scientists. Startingwith the development of semiconductor physics from basic quantummechanics, the text moves on to cover band structure and effectivemass theory, before covering electron-phonon coupling and chargetransport. It concludes with a chapter on optical transitions.Students will need some knowledge of quantum mechanics and solidstate although this is covered to some extent in the book. FEATURES * Concise introduction to the basics of semiconductor physics * Bridges the gap between fundamental subjects such as quantummechanics and Maxwell's equations and the processes determining thebehaviour of semiconductors * Describes semiconductor theory from a full quantum mechanicalapproach.An accessible introduction, avoiding reliance on grouptheory CONTENTS: Preface; Notation Conventions; Introduction; Electrons,nuclei and Hamiltonians; Band Structure; The k - p Approximation;Effective Mass Theory; The Crystal Lattice; Electron-phononCoupling; Charge Transport, Optical Transitions; Band Electrons inan Optical Field; Appendix A: The Hydrogen Atom; Appendix B: TheHarmonic Oscillator; Appendix C: Perturbation Theory; AppendixD:Tensors in Cubic Crystals; Appendix E: The Classical Limit;Appendix F: Some Fourier Transforms; Appendix G: Exercises;Bibliography.
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.
This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherant point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design and the prepare semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as a small as a few atomic layers in lateral extent. The resulting structures open up many new ares of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.
Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics.In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed.Each of the later chapters conclude with a description of modern developments. - Makes critical topics accessible by illustrating them with simple examples and figures - Presents modern quantum mechanical concepts systematically and applies them consistently throughout the book - Utilizes modern computational methods with MATLAB programs to solve the equations that arise in physics, and describes the programs and solutions in detail - Covers foundational topics, including transition probabilities, crystal structure, reciprocal lattices, and Bloch theorem to build understanding of applications, such as lasers and semiconductor devices - Features expanded exercises and problems at the end of each chapter as well as multiple appendices for quick reference
The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors. - Develops modern quantum mechanical ideas systematically and uses these ideas consistently throughout the book - Carefully considers fundamental subjects such as transition probabilities, crystal structure, reciprocal lattices, and Bloch theorem which are fundamental to any treatment of lasers and semiconductor devices - Clarifies each important concept through the use of a simple example and often an illustration - Features expanded exercises and problems at the end of each chapter - Offers multiple appendices to provide quick-reference for students