A Complete Introduction to Modern NMR Spectroscopy

A Complete Introduction to Modern NMR Spectroscopy

Author: Roger S. Macomber

Publisher: John Wiley & Sons

Published: 1997-12-23

Total Pages: 406

ISBN-13: 0471157368

DOWNLOAD EBOOK

Clear, accessible coverage of modern NMR spectroscopy-for students and professionals in many fields of science Nuclear magnetic resonance (NMR) spectroscopy has made quantum leaps in the last decade, becoming a staple tool in such divergent fields as chemistry, physics, materials science, biology, and medicine. That is why it is essential that scientists working in these areas be fully conversant with current NMR theory and practice. This down-to-basics text offers a comprehensive, up-to-date treatment of the fundamentals of NMR spectroscopy. Using a straightforward approach that develops all concepts from a rudimentary level without using heavy mathematics, it gives readers the knowledge they need to solve any molecular structure problem from a complete set of NMR data. Topics are illustrated throughout with hundreds of figures and actual spectra. Chapter-end summaries and review problems with answers are included to help reinforce and test understanding of key material. From NMR studies of biologically important molecules to magnetic resonance imaging, this book serves as an excellent all-around primer on NMR spectroscopic analysis.


Modern Magnetic Resonance

Modern Magnetic Resonance

Author: Graham A. Webb

Publisher: Springer Science & Business Media

Published: 2007-05-26

Total Pages: 1889

ISBN-13: 1402039107

DOWNLOAD EBOOK

A comprehensive collection of the applications of Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Electron-Spin Resonance (ESR). Covers the wide ranging disciplines in which these techniques are used: * Chemistry; * Biological Sciences; * Pharmaceutical Sciences; * Medical uses; * Marine Science; * Materials Science; * Food Science. Illustrates many techniques through the applications described, e.g.: * High resolution solid and liquid state NMR; * Low resolution NMR, especially important in food science; * Solution State NMR, especially important in pharmaceutical sciences; * Magnetic Resonance Imaging, especially important for medical uses; * Electron Spin Resonance, especially important for spin-labelling in food, marine and medical studies.


Magnetic Resonance Imaging

Magnetic Resonance Imaging

Author: Robert W. Brown

Publisher: John Wiley & Sons

Published: 2014-06-23

Total Pages: 976

ISBN-13: 0471720852

DOWNLOAD EBOOK

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.


Modern NMR Spectroscopy

Modern NMR Spectroscopy

Author: Jeremy K. M. Sanders

Publisher:

Published: 1993

Total Pages: 150

ISBN-13:

DOWNLOAD EBOOK

Erros I have made; Interpretation of spectra; Symmetry and exchange; Structure determination using NMR alone; Structure and mechanism; Hints; Solutions.


Medical Imaging Systems

Medical Imaging Systems

Author: Andreas Maier

Publisher: Springer

Published: 2018-08-02

Total Pages: 263

ISBN-13: 3319965204

DOWNLOAD EBOOK

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.


Modern Techniques in High-Resolution FT-NMR

Modern Techniques in High-Resolution FT-NMR

Author: Narayanan Chandrakumar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 396

ISBN-13: 1461246261

DOWNLOAD EBOOK

The magnetism of nuclear spin systems has proved an amazingly fertile ground for the creativity of researchers. This happy circumstance results from the triple benediction that nature appears to have bestowed on nuclear spins: they are sporting spies-being infinitely manipulable (one is even tempted to say malleable), not unduly coy in revealing their secrets, and having a whole treasure house of secrets to reveal in the first place. researcher with Since spin dynamics are now orchestrated by the NMR ever more subtle scores, it is important to be able to tune into the pro ceedings with precision, if one is to make sense of it at all. Fortunately, it is not terribly difficult to do so, since in many ways spin dynamics are the theoretician's dream come true: they are often finite dimensional and quite tractable with basic quantum mechanics, frequently allowing near exact treatments and readily testable predictions. This book was conceived two years ago, with the objective of providing a simple, consistent introduction to the description of the spin dynamics that one encounters in modern NMR experiments. We believed it was a good time to attempt this, since it was possible by then to give sufficiently general descriptions of powelful classes of new NMR experiments. The choice of experiments we discuss in detail is necessarily subjective, al though we hope to have given a flavor of most of the important classes of pulse sequences, including some surface coil imaging applications.


Electromagnetics in Magnetic Resonance Imaging

Electromagnetics in Magnetic Resonance Imaging

Author: Christopher M. Collins

Publisher: Morgan & Claypool Publishers

Published: 2016-03-01

Total Pages: 82

ISBN-13: 1681740834

DOWNLOAD EBOOK

In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.


Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Author: Joseph B. Lambert

Publisher: John Wiley & Sons

Published: 2019-01-04

Total Pages: 485

ISBN-13: 1119295238

DOWNLOAD EBOOK

Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.


Solid-State NMR I Methods

Solid-State NMR I Methods

Author: B. Blümich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 286

ISBN-13: 3642784836

DOWNLOAD EBOOK

1. A.-R. Grimmer, Berlin, FRG; B. Bl}mich, Aachen, FRG: Introduction to Solid-State NMR 2. F. Laupretre, Paris, France: High-Resolution 13C NMRInvestigations of Local Dynamics in Bulk Polymers at Temperatures Below andAbove the Glass-Transition Temperature 3. D. Raftery, Philadelphia, PA;B.F. Chmelka, Santa Barbara, CA: Xenon NMR Spectroscopy 4. G. Fleischer, Leipzig, FRG; F. Fujara, Mainz, FRG: NMR as a Generalized Incoherent Scattering Experiment 5. P. Bl}mler, B. Bl}mich, Mainz, FRG: NMR Imaging of Solids.