Modern Geometric Structures and Fields

Modern Geometric Structures and Fields

Author: Сергей Петрович Новиков

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 658

ISBN-13: 0821839292

DOWNLOAD EBOOK

Presents the basics of Riemannian geometry in its modern form as geometry of differentiable manifolds and the important structures on them. This book shows that Riemannian geometry has a great influence to several fundamental areas of modern mathematics and its applications.


Differential Geometric Structures

Differential Geometric Structures

Author: Walter A. Poor

Publisher: Courier Corporation

Published: 2015-04-27

Total Pages: 356

ISBN-13: 0486151913

DOWNLOAD EBOOK

This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.


New Horizons In Differential Geometry And Its Related Fields

New Horizons In Differential Geometry And Its Related Fields

Author: Toshiaki Adachi

Publisher: World Scientific

Published: 2022-04-07

Total Pages: 257

ISBN-13: 9811248117

DOWNLOAD EBOOK

This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.


Modern Geometry— Methods and Applications

Modern Geometry— Methods and Applications

Author: B.A. Dubrovin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 447

ISBN-13: 146121100X

DOWNLOAD EBOOK

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.


Modern Geometry— Methods and Applications

Modern Geometry— Methods and Applications

Author: B.A. Dubrovin

Publisher: Springer Science & Business Media

Published: 1985-08-05

Total Pages: 452

ISBN-13: 0387961623

DOWNLOAD EBOOK

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.


Modern Differential Geometry in Gauge Theories

Modern Differential Geometry in Gauge Theories

Author: Anastasios Mallios

Publisher: Springer Science & Business Media

Published: 2006-07-27

Total Pages: 303

ISBN-13: 0817644741

DOWNLOAD EBOOK

This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable


Dynamics, Statistics and Projective Geometry of Galois Fields

Dynamics, Statistics and Projective Geometry of Galois Fields

Author: V. I. Arnold

Publisher: Cambridge University Press

Published: 2010-12-02

Total Pages: 91

ISBN-13: 1139493442

DOWNLOAD EBOOK

V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.


Manifolds and Differential Geometry

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 690

ISBN-13: 0821848151

DOWNLOAD EBOOK

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.


A Guide To Lie Systems With Compatible Geometric Structures

A Guide To Lie Systems With Compatible Geometric Structures

Author: Javier De Lucas Araujo

Publisher: World Scientific

Published: 2020-01-22

Total Pages: 425

ISBN-13: 1786346990

DOWNLOAD EBOOK

The book presents a comprehensive guide to the study of Lie systems from the fundamentals of differential geometry to the development of contemporary research topics. It embraces several basic topics on differential geometry and the study of geometric structures while developing known applications in the theory of Lie systems. The book also includes a brief exploration of the applications of Lie systems to superequations, discrete systems, and partial differential equations.Offering a complete overview from the topic's foundations to the present, this book is an ideal resource for Physics and Mathematics students, doctoral students and researchers.