With exceptionally clear writing, Lathi takes students step by step through a history of communications systems from elementary signal analysis to advanced concepts in communications theory. The first four chapters of the text present basic principles, subsequent chapters offer ample material for flexibility in course content and level. All Topics are covered in detail, including a thorough treatment of frequency modulation and phase modulation. Numerous worked examples in each chapter and over 300 end-of-chapter problems and numerous illustrations and figures support the content.
For second and third year introductory communication systems courses for undergraduates, or an introductory graduate course. This revision of Couch's authoritative text provides the latest treatment of digital communication systems. The author balances coverage of both digital and analog communication systems, with an emphasis on design. Students will gain a working knowledge of both classical mathematical and personal computer methods to analyze, design, and simulate modern communication systems. MATLAB is integrated throughout.
This book serves as an easily accessible reference for wireless digital communication systems. Topics are presented with simple but non-trivial examples and then elaborated with their variations and sophistications. The book includes numerous examples and exercises to illustrate key points. For this new edition, a set of problems at the end of each chapter is added, for a total of 298 problems. The book emphasizes both practical problem solving and a thorough understanding of fundamentals, aiming to realize the complementary relationship between practice and theory. Though the author emphasizes wireless radio channels, the fundamentals that are covered here are useful to different channels - digital subscriber line, coax, power lines, optical fibers, and even Gigabit serial connections. The material in chapters 5 (OFDM), 6 (Channel coding), 7 (Synchronization), and 8 (Transceivers) contains new and updated information, not explicitly available in typical textbooks, and useful in practice. For example, in chapter 5, all known orthogonal frequency division multiplex signals are derived from its digitized analog FDM counterparts. Thus, it is flexible to have different pulse shape for subcarriers, and it can be serial transmission as well as block transmission. Currently predominant cyclic prefix based OFDM is a block transmission using rectangular pulse in time domain. This flexibility may be useful in certain applications. For additional information, consult the book support website: https://baycorewireless.com
An accessible undergraduate textbook introducing key fundamental principles behind modern communication systems, supported by exercises, software problems and lab exercises.
The book covers fundamentals and basics of engineering communication theory. It presents right mix of explanation of mathematics (theory) and explanation. The book discusses both analogue communication and digital communication in details. It covers the subject of ‘classical’ engineering communication starting from the very basics of the subject to the beginning of more advanced areas. It also covers all the basic mathematics which is required to read the text. It covers a two semester course as an undergraduate text and some topics in master’s course as well.
Contemporary Communication Systems provides a comprehensive introduction to analog and digital communication systems. In addition to a logical and easy-to-understand presentation of fundamental principles, the book engages students in the issues relevant to system and product implementation by integrating a discussion of theoretical concepts with extensive hands-on visual and simulation resources that reinforce learning. A unique feature of the book is sufficient coverage of important topics in digital communications including compression, multiplexing and synchronization techniques. The book also explores the impact of semiconductor revolution (Moore's law) and software technologies in the realization of modern digital communication systems.
An introductory treatment of communication theory as applied to the transmission of information-bearing signals with attention given to both analog and digital communications. Chapter 1 reviews basic concepts. Chapters 2 through 4 pertain to the characterization of signals and systems. Chapters 5 through 7 are concerned with transmission of message signals over communication channels. Chapters 8 through 10 deal with noise in analog and digital communications. Each chapter (except chapter 1) begins with introductory remarks and ends with a problem set. Treatment is self-contained with numerous worked-out examples to support the theory.· Fourier Analysis · Filtering and Signal Distortion · Spectral Density and Correlation · Digital Coding of Analog Waveforms · Intersymbol Interference and Its Cures · Modulation Techniques · Probability Theory and Random Processes · Noise in Analog Modulation · Optimum Receivers for Data Communication