This is a memorial volume dedicated to A. L. S. Corner, previously Professor in Oxford, who published important results on algebra, especially on the connections of modules with endomorphism algebras. The volume contains refereed contributions which are related to the work of Corner. It contains also an unpublished extended paper of Corner himself. A memorial volume with important contributions related to algebra.
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
Contains the proceedings of the conference Groups and Model Theory, held 2011, in Ruhr, Germany. Articles cover abelian groups, modules over commutative rings, permutation groups, automorphism groups of homogeneous structures such as graphs, relational structures, geometries, topological spaces or groups, consequences of model theoretic properties like stability or categoricity, subgroups of small index, the automorphism tower problem, as well as random constructions.
This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological algebraic structures, and provides more than 600 current references and 570 display equations for further exploration of the topic. It provides stimulating discussions from world-renowned names including Laszlo Fuchs, Robert Gilmer, Saharon Shelah, Daniel Simson, and Richard Swan to celebrate 40 years of study on cumulative rings. Describing emerging theories
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Gert H. Müller The growth of the number of publications in almost all scientific areas, as in the area of (mathematical) logic, is taken as a sign of our scientifically minded culture, but it also has a terrifying aspect. In addition, given the rapidly growing sophistica tion, specialization and hence subdivision of logic, researchers, students and teachers may have a hard time getting an overview of the existing literature, partic ularly if they do not have an extensive library available in their neighbourhood: they simply do not even know what to ask for! More specifically, if someone vaguely knows that something vaguely connected with his interests exists some where in the literature, he may not be able to find it even by searching through the publications scattered in the review journals. Answering this challenge was and is the central motivation for compiling this Bibliography. The Bibliography comprises (presently) the following six volumes (listed with the corresponding Editors): I. Classical Logic W. Rautenberg 11. Non-classical Logics W. Rautenberg 111. Model Theory H.-D. Ebbinghaus IV. Recursion Theory P.G. Hinman V. Set Theory A.R. Blass VI. ProofTheory; Constructive Mathematics J.E. Kister; D. van Dalen & A.S. Troelstra.