Naturally Fractured Reservoirs

Naturally Fractured Reservoirs

Author: Roberto Aguilera

Publisher: PennWell Books

Published: 1980

Total Pages: 730

ISBN-13:

DOWNLOAD EBOOK

This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.


Geologic Analysis of Naturally Fractured Reservoirs

Geologic Analysis of Naturally Fractured Reservoirs

Author: Ronald Nelson

Publisher: Elsevier

Published: 2001-08-24

Total Pages: 353

ISBN-13: 0080507298

DOWNLOAD EBOOK

Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data


Fractured Vuggy Carbonate Reservoir Simulation

Fractured Vuggy Carbonate Reservoir Simulation

Author: Jun Yao

Publisher: Springer

Published: 2017-08-08

Total Pages: 253

ISBN-13: 3662550326

DOWNLOAD EBOOK

This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.


Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Author: Kamy Sepehrnoori

Publisher: Elsevier

Published: 2020-08-27

Total Pages: 306

ISBN-13: 0128196882

DOWNLOAD EBOOK

The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. - Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs - Offers understanding of the impacts of key reservoir properties and complex fractures on well performance - Provides case studies to show how to use the EDFM method for different needs


Flow and Contaminant Transport in Fractured Rock

Flow and Contaminant Transport in Fractured Rock

Author: Jacob Bear

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 575

ISBN-13: 0080916473

DOWNLOAD EBOOK

In the past two or three decades, fractured rock domains have received increasing attention not only in reservoir engineering and hydrology, but also in connection with geological isolation of radioactive waste. Locations in both the saturated and unsaturated zones have been under consideration because such repositories are sources of heat and potential sources of groundwater contamination. Thus, in addition to the transport of mass of fluid phases in single and multiphase flow, the issues of heat transport and mass transport of components have to be addressed.


Fundamentals of Numerical Reservoir Simulation

Fundamentals of Numerical Reservoir Simulation

Author: D.W. Peaceman

Publisher: Elsevier

Published: 2000-04-01

Total Pages: 191

ISBN-13: 0080868606

DOWNLOAD EBOOK

The use of numerical reservoir simulation with high-speed electronic computers has gained wide acceptance throughout the petroleum industry for making engineering studies of a wide variety of oil and gas reservoirs throughout the world. These reservoir simulators have been designed for use by reservoir engineers who possess little or no background in the numerical mathematics upon which they are based. In spite of the efforts to improve numerical methods to make reservoir simulators as reliable, efficient, and automatic as possible, the user of a simulator is faced with a myriad of decisions that have nothing to do with the problem to be solved. This book combines a review of some basic reservoir mechanics with the derivation of the differential equations that reservoir simulators are designed to solve.


Fundamentals of Fractured Reservoir Engineering

Fundamentals of Fractured Reservoir Engineering

Author: T.D. van Golf-Racht

Publisher: Elsevier

Published: 1982-04-01

Total Pages: 729

ISBN-13: 0080868665

DOWNLOAD EBOOK

In the modem language of reservoir engineering by reservoir description is understood the totality of basic local information concerning the reservoir rock and fluids which by various procedures are extrapolated over the entire reservoir. Fracture detection, evaluation and processing is another essential step in the process of fractured reservoir description. In chapter 2, all parameters related to fracture density and fracture intensity, together with various procedures of data processing are discussed in detail. After a number of field examples, developed in Chap. 3, the main objective remains the quantitative evaluation of physical properties. This is done in Chap. 4, where the evaluation of fractures porosity and permeability, their correlation and the equivalent ideal geometrical models versus those parameters are discussed in great detail. Special rock properties such as capillary pressure and relative permeability are reexamined in the light of a double-porosity reservoir rock. In order to complete the results obtained by direct measurements on rock samples, Chap. 5 examines fracturing through indirect measurements from various logging results. The entire material contained in these five chapters defines the basic physical parameters and indicates procedures for their evaluation which may be used further in the description of fractured reservoirs.


Reservoir Model Design

Reservoir Model Design

Author: Philip Ringrose

Publisher: Springer

Published: 2014-10-03

Total Pages: 260

ISBN-13: 9400754973

DOWNLOAD EBOOK

This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, production mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. Audience: The main audience for this book is the community of applied geoscientists and engineers involved in the development and use of subsurface fluid resources. The book is suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. · Provides practical advice and guidelines for users of 3D reservoir modelling packages · Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling · Covers rock modelling, property modelling, upscaling and uncertainty handling · Encompasses clastic, carbonate and fractured reservoirs


An Introduction to Reservoir Simulation Using MATLAB/GNU Octave

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave

Author: Knut-Andreas Lie

Publisher: Cambridge University Press

Published: 2019-08-08

Total Pages: 677

ISBN-13: 1108492436

DOWNLOAD EBOOK

Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.


Multiphase Fluid Flow in Porous and Fractured Reservoirs

Multiphase Fluid Flow in Porous and Fractured Reservoirs

Author: Yu-Shu Wu

Publisher: Gulf Professional Publishing

Published: 2015-09-23

Total Pages: 420

ISBN-13: 0128039116

DOWNLOAD EBOOK

Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website