The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.
The process of developing models, known as modeling, allows scientists to visualize difficult concepts, explain complex phenomena and clarify intricate theories. In recent years, science educators have greatly increased their use of modeling in teaching, especially real-time dynamic modeling, which is central to a scientific investigation. Modeling in science teaching is being used in an array of fields, everything from primary sciences to tertiary chemistry to college physics, and it is sure to play an increasing role in the future of education. Models and Modeling: Cognitive Tools for Scientific Enquiry is a comprehensive introduction to the use of models and modeling in science education. It identifies and describes many different modeling tools and presents recent applications of modeling as a cognitive tool for scientific enquiry.
The book describes how incorporating mathematical modeling activities and projects, that are designed to reflect authentic engineering experience, into engineering classes has the potential to enhance and tap the diverse strengths of students who come from a variety of backgrounds.
Presents a resume of the papers presented at the 4th International Conference on the Teaching of Mathematical Modelling and Applications. It presents a distillation of the experience, views and ideas of leading researchers, lecturers and teachers in the field.
Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.
This book continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling. Each chapter shows how real life problems can be discussed during university lectures, in school classrooms and industrial research. International experts contribute their knowledge and experience by providing analysis, insight and comment whilst tackling large and complex problems by applying mathematical modelling. This book covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications. - Covers the proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications - Continues the ICTMA tradition of influencing teaching and learning in the application of mathematical modelling - Shows how real life problems can be discussed during university lectures, in school classrooms and industrial research
Engineering Design and Mathematical Modelling: Concepts and Applications consists of chapters that span the Engineering design and mathematical modelling domains. Engineering design and mathematical modelling are key tools/techniques in the Science, Technology and Innovation spheres. Whilst engineering design is concerned with the creation of functional innovative products and processes, mathematical modelling seeks to utilize mathematical principles and concepts to describe and control real world phenomena. Both of these can be useful tools for spurring and hastening progress in developing countries. They are also areas where Africa needs to ‘skill-up’ in order to build a technological base. The chapters in this book cover the relevant research trends in the fields of both engineering design and mathematical modelling. This book was originally published as a special issue of the African Journal of Science, Technology, Innovation and Development.
This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results.
Models and modelling play a central role in the nature of science, in its conduct, in the accreditation and dissemination of its outcomes, as well as forming a bridge to technology. They therefore have an important place in both the formal and informal science education provision made for people of all ages. This book is a product of five years collaborative work by eighteen researchers from four countries. It addresses four key issues: the roles of models in science and their implications for science education; the place of models in curricula for major science subjects; the ways that models can be presented to, are learned about, and can be produced by, individuals; the implications of all these for research and for science teacher education. The work draws on insights from the history and philosophy of science, cognitive psychology, sociology, linguistics, and classroom research, to establish what may be done and what is done. The book will be of interest to researchers in science education and to those taking courses of advanced study throughout the world.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.