Modelling, Simulation and Control of Thermal Energy Systems

Modelling, Simulation and Control of Thermal Energy Systems

Author: Kwang Y. Lee

Publisher: MDPI

Published: 2020-11-03

Total Pages: 228

ISBN-13: 3039433601

DOWNLOAD EBOOK

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.


Thermal System Design and Simulation

Thermal System Design and Simulation

Author: P.L. Dhar

Publisher: Academic Press

Published: 2016-10-25

Total Pages: 618

ISBN-13: 0128094303

DOWNLOAD EBOOK

Thermal System Design and Simulation covers the fundamental analyses of thermal energy systems that enable users to effectively formulate their own simulation and optimal design procedures. This reference provides thorough guidance on how to formulate optimal design constraints and develop strategies to solve them with minimal computational effort. The book uniquely illustrates the methodology of combining information flow diagrams to simplify system simulation procedures needed in optimal design. It also includes a comprehensive presentation on dynamics of thermal systems and the control systems needed to ensure safe operation at varying loads. Designed to give readers the skills to develop their own customized software for simulating and designing thermal systems, this book is relevant for anyone interested in obtaining an advanced knowledge of thermal system analysis and design. - Contains detailed models of simulation for equipment in the most commonly used thermal engineering systems - Features illustrations for the methodology of using information flow diagrams to simplify system simulation procedures - Includes comprehensive global case studies of simulation and optimization of thermal systems


Modeling and Simulation of Energy Systems

Modeling and Simulation of Energy Systems

Author: Thomas A. Adams II

Publisher: MDPI

Published: 2019-11-06

Total Pages: 496

ISBN-13: 3039215183

DOWNLOAD EBOOK

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.


Modelling and Simulation in Thermal and Chemical Engineering

Modelling and Simulation in Thermal and Chemical Engineering

Author: J. Thoma

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 248

ISBN-13: 9783540663881

DOWNLOAD EBOOK

The main object of this book is modeling and simulation of energetic processes by bond graphs. But even without knowledge of this powerful method it can be used to a certain extent as an introduction to simulation in thermodynamics. The book addresses advanced students, lecturers and researchers in mechanical engineering and automation as well as experienced engineers in process industries.


Thermal Energy Storage

Thermal Energy Storage

Author: Ibrahim Dinçer

Publisher: John Wiley & Sons

Published: 2011-06-24

Total Pages: 585

ISBN-13: 1119956625

DOWNLOAD EBOOK

The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.


Thermal Power Plant Simulation and Control

Thermal Power Plant Simulation and Control

Author: Damian Flynn

Publisher: IET

Published: 2003-08-18

Total Pages: 447

ISBN-13: 0852964196

DOWNLOAD EBOOK

An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.


Modeling and Control in Air-conditioning Systems

Modeling and Control in Air-conditioning Systems

Author: Ye Yao

Publisher: Springer

Published: 2016-10-01

Total Pages: 496

ISBN-13: 3662533138

DOWNLOAD EBOOK

This book investigates the latest modeling and control technologies in the context of air-conditioning systems. Firstly, it introduces the state-space method for developing dynamic models of all components in a central air-conditioning system. The models are primarily nonlinear and based on the fundamental principle of energy and mass conservation, and are transformed into state-space form through linearization. The book goes on to describe and discuss the state-space models with the help of graph theory and the structure-matrix theory. Subsequently, virtual sensor calibration and virtual sensing methods (which are very useful for real system control) are illustrated together with a case study. Model-based predictive control and state-space feedback control are applied to air-conditioning systems to yield better local control, while the air-side synergic control scheme and a global optimization strategy based on the decomposition-coordination method are developed so as to achieve energy conservation in the central air-conditioning system. Lastly, control strategies for VAV systems including total air volume control and trim & response static pressure control are investigated in practice.


Modeling, Simulation, and Control of a Medium-Scale Power System

Modeling, Simulation, and Control of a Medium-Scale Power System

Author: Tharangika Bambaravanage

Publisher: Springer

Published: 2017-10-17

Total Pages: 191

ISBN-13: 9811049106

DOWNLOAD EBOOK

This book highlights the most important aspects of mathematical modeling, computer simulation, and control of medium-scale power systems. It discusses a number of practical examples based on Sri Lanka’s power system, one characterized by comparatively high degrees of variability and uncertainty. Recently introduced concepts such as controlled disintegration to maintain grid stability are discussed and studied using simulations of practical scenarios. Power systems are complex, geographically distributed, dynamical systems with numerous interconnections between neighboring systems. Further, they often comprise a generation mix that includes hydro, thermal, combined cycle, and intermittent renewable plants, as well as considerably extended transmission lines. Hence, the detailed analysis of their transient behaviors in the presence of disturbances is both highly theory-intensive and challenging in practice. Effectively regulating and controlling power system behavior to ensure consistent service quality and transient stability requires the use of various schemes and systems. The book’s initial chapters detail the fundamentals of power systems; in turn, system modeling and simulation results using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) software are presented and compared with available real-world data. Lastly, the book uses computer simulation studies under a variety of practical contingency scenarios to compare several under-frequency load-shedding schemes. Given the breadth and depth of its coverage, it offers a truly unique resource on the management of medium-scale power systems.


Artificial Neural Networks for Renewable Energy Systems and Real-World Applications

Artificial Neural Networks for Renewable Energy Systems and Real-World Applications

Author: Ammar Hamed Elsheikh

Publisher: Academic Press

Published: 2022-09-08

Total Pages: 290

ISBN-13: 0128231866

DOWNLOAD EBOOK

Artificial Neural Networks for Renewable Energy Systems and Real-World Applications presents current trends for the solution of complex engineering problems in the application, modeling, analysis, and optimization of different energy systems and manufacturing processes. With growing research catering to the applications of neural networks in specific industrial applications, this reference provides a single resource catering to a broader perspective of ANN in renewable energy systems and manufacturing processes. ANN-based methods have attracted the attention of scientists and researchers in different engineering and industrial disciplines, making this book a useful reference for all researchers and engineers interested in artificial networks, renewable energy systems, and manufacturing process analysis. - Includes illustrative examples on the design and development of ANNS for renewable and manufacturing applications - Features computer-aided simulations presented as algorithms, pseudocodes and flowcharts - Covers ANN theory for easy reference in subsequent technology specific sections


Building Performance Simulation for Design and Operation

Building Performance Simulation for Design and Operation

Author: Jan L.M. Hensen

Publisher: Routledge

Published: 2012-09-10

Total Pages: 538

ISBN-13: 1134026358

DOWNLOAD EBOOK

Effective building performance simulation can reduce the environmental impact of the built environment, improve indoor quality and productivity, and facilitate future innovation and technological progress in construction. It draws on many disciplines, including physics, mathematics, material science, biophysics and human behavioural, environmental and computational sciences. The discipline itself is continuously evolving and maturing, and improvements in model robustness and fidelity are constantly being made. This has sparked a new agenda focusing on the effectiveness of simulation in building life-cycle processes. Building Performance Simulation for Design and Operation begins with an introduction to the concepts of performance indicators and targets, followed by a discussion on the role of building simulation in performance-based building design and operation. This sets the ground for in-depth discussion of performance prediction for energy demand, indoor environmental quality (including thermal, visual, indoor air quality and moisture phenomena), HVAC and renewable system performance, urban level modelling, building operational optimization and automation. Produced in cooperation with the International Building Performance Simulation Association (IBPSA), and featuring contributions from fourteen internationally recognised experts in this field, this book provides a unique and comprehensive overview of building performance simulation for the complete building life-cycle from conception to demolition. It is primarily intended for advanced students in building services engineering, and in architectural, environmental or mechanical engineering; and will be useful for building and systems designers and operators.