Modelling Potential Crop Growth Processes

Modelling Potential Crop Growth Processes

Author: J. Goudriaan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 247

ISBN-13: 9401107505

DOWNLOAD EBOOK

We dedicate this book to professor C. T. de Wit (1924 - 1993) who initiated Production Ecology as a school of thought at the Wageningen Agricultural Univer sity (see Rabbinge et at. , 1990). To acknowledge the leading role of C. T. de Wit, a recently formed graduate school at this university in Production Ecology was named after him. Production Ecology is the study of ecological processes, with special attention to flows of energy and matter as factors that determine the productivity of ecological systems. Agro-ecosystems are a special case of ecosystems which are much better suited for the productivity approach than natural ecosystems are. This is the reason for the strong role of agricultural research in production ecology. On the other hand, it must be recognized that the spatial heterogeneity of natural ecosys tems and their species richness may alter some ecophysiological relationships. However, the basic physical, chemical and physiological processes will be the same. De Wit introduced the state variable approach as the basis for simulation mod elling. In this approach the floating character of nature is schematized into a series of snapshots over time in which the states are frozen at each separate moment. The current state determines how the rates of change will lead to the next snapshot. This way of thinking enables a clear and workable representation of interacting simul taneous processes, without compromising on the mathematics.


Plant and Crop Modelling

Plant and Crop Modelling

Author: J. H. M. Thornley

Publisher:

Published: 2000

Total Pages: 0

ISBN-13: 9781930665057

DOWNLOAD EBOOK

This book is a textbook (it includes, for example, exercises and outline solutions). The plant scientist is shown how to express physiological ideas mathematically and how to deduce quantitative conclusions, which can then be compared with experiment. There is little new biology in the book, but it is presented in a way that will be new to many biologists. The matching of models to experiments means using mathematics for formulating biological concepts and second, using algebra, calculus, or, now more frequently, computers to solve or simulate the resulting model; and finally, comparing, qualitatively or quantitatively, prediction to measurement. Computers are the important enabling technology that makes it all possible: solving equations, assembling models of increasing sophistication and complexity, and comparing theory with experiment. The book is divided into three parts. Part I. Covers subjects of wide relevance to modelling and plant biology. Part II. The reader may choose to select topics of particular interest from part II. However, the whole-plant modeller will need to study all chapters, and the plant ecosystem modeller may need to add other material also. Part III. Plant morphology is at an introductory level. It is included because morphological characters may prove to be of equal importance to some physiological traits in determining plant function and performance. "This textbook presents, in an interesting and clearly written fashion, a mathematical approach to a wide range of topics in plant and crop physiology, including light interception, leaf and canopy photosynthesis, respiration, partitioning, transpiration and water relations, branching and phyllotaxis. The biochemistry of plant growth and maintenanace is also presented in some detail. I was very pleased with the text, especially with the philosophy presented by the authors that biological models are necessarily simplifications of complex detail. I would strongly recommend it for reading and consultation by graduates and research workers." J. Exp. Botany "The authors' approach succeeds admirably, giving a thorough account of the mathematical toolbox available to researchers and the areas in which those tools have been used." Plant, Cell and Environment "Combining considerable technical cleverness with creativity and the refreshing notion that science is a "common-sense, unpredictable, fascinating and thoroughly human activity." Times Higher Educational Supplement "Exceptionally scholarly volume. Logical and systematic. Authors have assembled a mass of mathematical material in an elegant layout." Agricultural Systems


Agroclimatology

Agroclimatology

Author: Jerry L. Hatfield

Publisher: John Wiley & Sons

Published: 2020-01-22

Total Pages: 656

ISBN-13: 0891183574

DOWNLOAD EBOOK

Can we unlock resilience to climate stress by better understanding linkages between the environment and biological systems? Agroclimatology allows us to explore how different processes determine plant response to climate and how climate drives the distribution of crops and their productivity. Editors Jerry L. Hatfield, Mannava V.K. Sivakumar, and John H. Prueger have taken a comprehensive view of agroclimatology to assist and challenge researchers in this important area of study. Major themes include: principles of energy exchange and climatology, understanding climate change and agriculture, linkages of specific biological systems to climatology, the context of pests and diseases, methods of agroclimatology, and the application of agroclimatic principles to problem-solving in agriculture.


Modeling Physiology of Crop Development, Growth and Yield

Modeling Physiology of Crop Development, Growth and Yield

Author: Afshin Soltani

Publisher: CABI

Published: 2012

Total Pages: 336

ISBN-13: 1845939700

DOWNLOAD EBOOK

Model studies focus experimental investigations to improve our understanding and performance of systems. Concentrating on crop modelling, this book provides an introduction to the concepts of crop development, growth, and yield, with step-by-step outlines to each topic, suggested exercises and simple equations. A valuable text for students and researchers of crop development alike, this book is written in five parts that allow the reader to develop a solid foundation and coverage of production models including water- and nitrogen-limited systems.


Modeling and Control of Greenhouse Crop Growth

Modeling and Control of Greenhouse Crop Growth

Author: Francisco Rodríguez

Publisher: Springer

Published: 2014-11-01

Total Pages: 275

ISBN-13: 3319111345

DOWNLOAD EBOOK

A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques. Reference trajectories are found for diurnal and nocturnal temperatures (climate-related setpoints) and electrical conductivity (fertirrigation-related setpoints). The objectives are to maximize profit, fruit quality, and water-use efficiency, these being encouraged by current international rules. Illustrative practical results selected from those obtained in an industrial greenhouse during the last eight years are shown and described. The text of the book is complemented by the use of illustrations, tables and real examples which are helpful in understanding the material. Modeling and Control of Greenhouse Crop Growth will be of interest to industrial engineers, academic researchers and graduates from agricultural, chemical, and process-control backgrounds.


Understanding Options for Agricultural Production

Understanding Options for Agricultural Production

Author: G.Y. Tsuji

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 405

ISBN-13: 9401736243

DOWNLOAD EBOOK

The first premise of this book is that farmers need access to options for improving their situation. In agricultural terms, these options might be manage ment alternatives or different crops to grow, that can stabilize or increase household income, that reduce soil degradation and dependence on off-farm inputs, or that exploit local market opportunities. Farmers need a facilitating environment, in which affordable credit is available if needed, in which policies are conducive to judicious management of natural resources, and in which costs and prices of production are stable. Another key ingredient of this facilitating environment is information: an understanding of which options are viable, how these operate at the farm level, and what their impact may be on the things that farmers perceive as being important. The second premise is that systems analysis and simulation have an impor tant role to play in fostering this understanding of options, traditional field experimentation being time-consuming and costly. This book summarizes the activities of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project, an international initiative funded by the United States Agency for International Development (USAID). IBSNAT was an attempt to demonstrate the effectiveness of understanding options through systems analysis and simulation for the ultimate benefit of farm households in the tropics and subtropics. The idea for the book was first suggested at one of the last IBSNAT group meetings held at the University of Hawaii in 1993.


Photosynthesis of Leaf Canopies

Photosynthesis of Leaf Canopies

Author: Cornelis Teunis de Wit

Publisher:

Published: 1965

Total Pages: 68

ISBN-13:

DOWNLOAD EBOOK

The development of a procedure to calculate the effect of certain environmental factors on the rate of photo-synthesis imposed mainly geometrical problems, which were solved in such a way that the actual calculation could be carried out by means of a computer. The calculation procedures have been used to study the. relative importance of the variables under various conditions. The results for a standard set of conditions, have been summarized in order to make it possible to estimate the daily photosynthesis at any time and place for a wide range of photosynthesis functions without a computer.


Introduction to Mathematical Modeling of Crop Growth

Introduction to Mathematical Modeling of Crop Growth

Author: Christopher B. S. Teh

Publisher: Dissertation.com

Published: 2006

Total Pages: 278

ISBN-13: 1581129998

DOWNLOAD EBOOK

Learning mathematical modeling need not be difficult. Unlike other books, this book not only lists the equations one-by-one, but explains in detail how they are each derived, used, and finally assembled into a computer program for model simulations. This book shows how mathematics is applied in agriculture, in particular to modeling the growth and yield of a generic crop. Topics covered are agriculture meteorology, solar radiation interception and absorption, evapotranspiration, energy and soil water balance, soil water flow, photosynthesis, respiration, and crop growth development. Rather than covering many modeling approaches but in superficial detail, this book selects one or two widely-used modeling approaches and discusses about them in depth. Principles learned from this book equips readers when they encounter other modeling approaches or when they develop their own crop models.