Modelling Nonlinear Economic Time Series

Modelling Nonlinear Economic Time Series

Author: Timo Teräsvirta

Publisher: OUP Oxford

Published: 2010-12-16

Total Pages: 592

ISBN-13: 9780199587148

DOWNLOAD EBOOK

This book contains an extensive up-to-date overview of nonlinear time series models and their application to modelling economic relationships. It considers nonlinear models in stationary and nonstationary frameworks, and both parametric and nonparametric models are discussed. The book contains examples of nonlinear models in economic theory and presents the most common nonlinear time series models. Importantly, it shows the reader how to apply these models in practice. For thispurpose, the building of various nonlinear models with its three stages of model building: specification, estimation and evaluation, is discussed in detail and is illustrated by several examples involving both economic and non-economic data. Since estimation of nonlinear time series models is carried outusing numerical algorithms, the book contains a chapter on estimating parametric nonlinear models and another on estimating nonparametric ones.Forecasting is a major reason for building time series models, linear or nonlinear. The book contains a discussion on forecasting with nonlinear models, both parametric and nonparametric, and considers numerical techniques necessary for computing multi-period forecasts from them. The main focus of the book is on models of the conditional mean, but models of the conditional variance, mainly those of autoregressive conditional heteroskedasticity, receive attention as well. A separate chapter isdevoted to state space models. As a whole, the book is an indispensable tool for researchers interested in nonlinear time series and is also suitable for teaching courses in econometrics and time series analysis.


Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data

Author: Philip Rothman

Publisher: Springer Science & Business Media

Published: 1999-01-31

Total Pages: 394

ISBN-13: 0792383796

DOWNLOAD EBOOK

Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.


Nonlinear Economic Models

Nonlinear Economic Models

Author: John Creedy

Publisher: Edward Elgar Publishing

Published: 1997

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

A sequel to Creedy and Martin's (eds.) Chaos and Nonlinear Models (1994). Compiles recent developments in such techniques as cross- sectional studies of income distribution and discrete choice models, time series models of exchange rate dynamics and jump processes, and artificial neural networks and genetic algorithms of financial markets. Also considers the development of theoretical models and estimating and testing methods, with a wide range of applications in microeconomics, macroeconomics, labor, and finance. Annotation copyrighted by Book News, Inc., Portland, OR


Modeling Financial Time Series with S-PLUS

Modeling Financial Time Series with S-PLUS

Author: Eric Zivot

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 632

ISBN-13: 0387217630

DOWNLOAD EBOOK

The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.


Nonlinear Time Series Analysis of Business Cycles

Nonlinear Time Series Analysis of Business Cycles

Author: C. Milas

Publisher: Emerald Group Publishing

Published: 2006-02-08

Total Pages: 461

ISBN-13: 044451838X

DOWNLOAD EBOOK

This volume of Contributions to Economic Analysis addresses a number of important questions in the field of business cycles including: How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? And, is the business cycle asymmetric, and does it matter?


Nonlinear Time Series Analysis with R

Nonlinear Time Series Analysis with R

Author: Ray Huffaker

Publisher: Oxford University Press

Published: 2017-10-20

Total Pages: 312

ISBN-13: 0191085790

DOWNLOAD EBOOK

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians — with limited knowledge of nonlinear dynamics — to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework — condensed from sound empirical practices recommended in the literature — that details a step-by-step procedure for applying NLTS in real-world data diagnostics.


Elements of Nonlinear Time Series Analysis and Forecasting

Elements of Nonlinear Time Series Analysis and Forecasting

Author: Jan G. De Gooijer

Publisher: Springer

Published: 2017-03-30

Total Pages: 626

ISBN-13: 3319432524

DOWNLOAD EBOOK

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.


The Econometric Modelling of Financial Time Series

The Econometric Modelling of Financial Time Series

Author: Terence C. Mills

Publisher: Cambridge University Press

Published: 2008-03-20

Total Pages: 468

ISBN-13: 9780521883818

DOWNLOAD EBOOK

Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.


Nonlinear Time Series

Nonlinear Time Series

Author: Jianqing Fan

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 565

ISBN-13: 0387693955

DOWNLOAD EBOOK

This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.