Building Performance Simulation for Design and Operation

Building Performance Simulation for Design and Operation

Author: Jan L.M. Hensen

Publisher: Routledge

Published: 2012-09-10

Total Pages: 538

ISBN-13: 1134026358

DOWNLOAD EBOOK

Effective building performance simulation can reduce the environmental impact of the built environment, improve indoor quality and productivity, and facilitate future innovation and technological progress in construction. It draws on many disciplines, including physics, mathematics, material science, biophysics and human behavioural, environmental and computational sciences. The discipline itself is continuously evolving and maturing, and improvements in model robustness and fidelity are constantly being made. This has sparked a new agenda focusing on the effectiveness of simulation in building life-cycle processes. Building Performance Simulation for Design and Operation begins with an introduction to the concepts of performance indicators and targets, followed by a discussion on the role of building simulation in performance-based building design and operation. This sets the ground for in-depth discussion of performance prediction for energy demand, indoor environmental quality (including thermal, visual, indoor air quality and moisture phenomena), HVAC and renewable system performance, urban level modelling, building operational optimization and automation. Produced in cooperation with the International Building Performance Simulation Association (IBPSA), and featuring contributions from fourteen internationally recognised experts in this field, this book provides a unique and comprehensive overview of building performance simulation for the complete building life-cycle from conception to demolition. It is primarily intended for advanced students in building services engineering, and in architectural, environmental or mechanical engineering; and will be useful for building and systems designers and operators.


Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

Author: Nicola Femia

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 366

ISBN-13: 1466506911

DOWNLOAD EBOOK

Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) source. Tools to Help You Improve the Efficiency of Photovoltaic Systems The book supplies an overview of recent improvements in connecting PV systems to the grid and highlights various solutions that can be used as a starting point for further research and development. It begins with a review of methods for modeling a PV array working in uniform and mismatched conditions. The book then discusses several ways to achieve the best maximum power point tracking (MPPT) performance. A chapter focuses on MPPT efficiency, examining the design of the parameters that affect algorithm performance. The authors also address the maximization of the energy harvested in mismatched conditions, in terms of both power architecture and control algorithms, and discuss the distributed MPPT approach. The final chapter details the design of DC/DC converters, which usually perform the MPPT function, with special emphasis on their energy efficiency. Get Insights from the Experts on How to Effectively Implement MPPT Written by well-known researchers in the field of photovoltaic systems, this book tackles state-of-the-art issues related to how to extract the maximum electrical power from photovoltaic arrays under any weather condition. Featuring a wealth of examples and illustrations, it offers practical guidance for researchers and industry professionals who want to implement MPPT in photovoltaic systems.


Emerging Photovoltaic Materials

Emerging Photovoltaic Materials

Author: Santosh K. Kurinec

Publisher: John Wiley & Sons

Published: 2018-12-03

Total Pages: 759

ISBN-13: 1119407680

DOWNLOAD EBOOK

This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.


Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules

Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules

Author: Hsinjin Edwin Yang

Publisher: William Andrew

Published: 2019-06-14

Total Pages: 356

ISBN-13: 0128115459

DOWNLOAD EBOOK

Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules describes the durability and reliability behavior of polymers used in Si-photovoltaic modules and systems, particularly in terms of physical aging and degradation process/mechanisms, characterization methods, accelerated exposure chamber and testing, module level testing, and service life prediction. The book compares polymeric materials to traditional materials used in solar applications, explaining the degradation pathways of the different elements of a photovoltaic module, including encapsulant, front sheet, back sheet, wires and connectors, adhesives, sealants, and more. In addition, users will find sections on the tests needed for the evaluation of polymer degradation and aging, as well as accelerated tests to aid in materials selection. As demand for photovoltaics continues to grow globally, with polymer photovoltaics offering significantly lower production costs compared to earlier approaches, this book will serve as a welcome resource on new avenues.


World Renewable Energy Congress VI

World Renewable Energy Congress VI

Author: A. A. M. Sayigh

Publisher: Elsevier

Published: 2000-09-26

Total Pages: 634

ISBN-13: 0080540511

DOWNLOAD EBOOK

The World Renewable Energy Congress is a key event at the start of the 21st century.It is a vital forum for researchers with an interest in helping renewables to reach their full potential. The effects of global warming and pollution are becoming more apparent for all to see - and the development of renewable solutions to these problems is increasingly important globally.If you were unable to attend the conference, the proceedings will provide an invaluable comprehensive summary of the latest topics and papers.


Thermal Analysis and Design of Passive Solar Buildings

Thermal Analysis and Design of Passive Solar Buildings

Author: AK Athienitis

Publisher: Routledge

Published: 2013-10-18

Total Pages: 297

ISBN-13: 1134274149

DOWNLOAD EBOOK

Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control. Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems that act as natural filters between the indoor and outdoor environments, while maximizing the utilization of solar energy. As such it will be an essential source of information to engineers, architects, HVAC engineers and building physicists.


Modeling, Design, and Optimization of Net-Zero Energy Buildings

Modeling, Design, and Optimization of Net-Zero Energy Buildings

Author: Andreas Athienitis

Publisher: John Wiley & Sons

Published: 2015-01-26

Total Pages: 396

ISBN-13: 3433604657

DOWNLOAD EBOOK

Building energy design is currently going through a period of major changes. One key factor of this is the adoption of net-zero energy as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. In this book, accomplished international experts present advanced modeling techniques as well as in-depth case studies in order to aid designers in optimally using simulation tools for net-zero energy building design. The strategies and technologies discussed in this book are, however, also applicable for the design of energy-plus buildings. This book was facilitated by International Energy Agency's Solar Heating and Cooling (SHC) Programs and the Energy in Buildings and Communities (EBC) Programs through the joint SHC Task 40/EBC Annex 52: Towards Net Zero Energy Solar Buildings R&D collaboration. After presenting the fundamental concepts, design strategies, and technologies required to achieve net-zero energy in buildings, the book discusses different design processes and tools to support the design of net-zero energy buildings (NZEBs). A substantial chapter reports on four diverse NZEBs that have been operating for at least two years. These case studies are extremely high quality because they all have high resolution measured data and the authors were intimately involved in all of them from conception to operating. By comparing the projections made using the respective design tools with the actual performance data, successful (and unsuccessful) design techniques and processes, design and simulation tools, and technologies are identified. Written by both academics and practitioners (building designers) and by North Americans as well as Europeans, this book provides a very broad perspective. It includes a detailed description of design processes and a list of appropriate tools for each design phase, plus methods for parametric analysis and mathematical optimization. It is a guideline for building designers that draws from both the profound theoretical background and the vast practical experience of the authors.


Advanced Thermoelectric Materials for Energy Harvesting Applications

Advanced Thermoelectric Materials for Energy Harvesting Applications

Author: Saim Memon

Publisher: BoD – Books on Demand

Published: 2019-10-30

Total Pages: 142

ISBN-13: 1789845289

DOWNLOAD EBOOK

Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.