Modelling and Characterization of Mechanically Regulated Tissue Formation Around Bone-interfacing Implants

Modelling and Characterization of Mechanically Regulated Tissue Formation Around Bone-interfacing Implants

Author: Craig Alexander Simmons

Publisher:

Published: 2000

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In many cases, orthopaedic and dental implants can restore function to diseased or damaged joints and edentulous jaws. However, in several challenging clinical situations, it is difficult to achieve adequate fixation (osseointegration) between the implant and bone. Since osseointegration is necessary for clinical success, implant failure rates in these cases are unacceptably high. Understanding the factors that allow bone-interfacing implants to osseointegrate rapidly and reliably should lead to improvements in their use and design. With this being our goal, we investigated the influence of implant surface geometry and local tissue strains on peri-implant tissue formation. Using a rabbit model, we evaluated the histological and mechanical characteristics of the early healing tissues around nonfunctional implants with Ti6Al4V sintered porous surfaces and Ti plasma-sprayed surfaces. We found that the early healing tissues integrated with the three-dimensional interconnected structure of the sintered porous surface and mineralized more rapidly than the tissues around the irregular geometry of the plasma-sprayed surface. Consequently, the stiffness and strength of attachment was greater for the porous-surfaced implants. These results demonstrate that implant surface geometry influences early peri-implant tissue formation and, as a result, the early mechanical stability of implants. To investigate the relationship between implant surface geometry, the local mechanical environment, and peri-implant tissue formation, we developed a computational micromechanical model based on homogenization methods to describe the effective and local properties of the porous-surfaced and plasma-sprayed peri-implant regions. In validation tests, we showed that the model provided reasonably accurate initial predictions of the properties of the peri-implant regions. Using the computational model, we compared the local mechanical environments around porous-surfaced and plasma-sprayed implants. In cases with minimal implant loading, the model predicted local tissue strains that permitted localized ' and' appositional bone formation around porous-surfaced implants, but only appositional bone formation for plasma-sprayed implants. Based on the model predictions and experimental data from earlier studies, we proposed a quantitative model for the mechanical regulation of peri-implant tissue formation. The mechanoregulatory model is consistent with observations of tissue formation around porous-surfaced and plasma-sprayed implants, and provides initial criteria to evaluate the osseointegration potential of bone-interfacing implants.


Active Implants and Scaffolds for Tissue Regeneration

Active Implants and Scaffolds for Tissue Regeneration

Author: Meital Zilberman

Publisher: Springer Science & Business Media

Published: 2011-05-05

Total Pages: 511

ISBN-13: 3642180655

DOWNLOAD EBOOK

Active implants are actually drug or protein-eluting implants that induce healing effects, in addition to their regular task, such as support. This effect is achieved by controlled release of the active agent to the surrounding tissue. This book will give a broad overview of biomaterial platforms used as basic elements of drug-eluting implants. It will include mainly coatings for vascular stents with controlled release of antiproliferative agents, wound dressings with controlled release of antibacterial agents, drug-eluting vascular grafts, protein-eluting scaffolds for tissue regeneration, drug-eluting platforms for dental and other applications. Thus, both internal and external implants are described. The drug-eluting implants will be described in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, as well as implant functioning. Smart polymeric systems, such as crosslinked poly-lactones, thermo and pH-sensitive hydrogels and poly(amido-amines), as well as novel basic structural elements, such as composite fibers and films, and nanostructures will be thoroughly described. The effect of the processing parameters on the microstructure and on the resulting drug release profiles, mechanical and physical properties, and other relevant properties, will be emphasized. The described new biomaterials approaches for active implants enhance the tools available for creating clinically important biomedical applications.


Bone Tissue Engineering

Bone Tissue Engineering

Author: Jeffrey O. Hollinger

Publisher: CRC Press

Published: 2004-10-14

Total Pages: 500

ISBN-13: 1135501912

DOWNLOAD EBOOK

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t


Mechanical Testing of Bone and the Bone-Implant Interface

Mechanical Testing of Bone and the Bone-Implant Interface

Author: Yuehuei H. An

Publisher: CRC Press

Published: 1999-11-29

Total Pages: 650

ISBN-13: 1420073567

DOWNLOAD EBOOK

The mechanical properties of whole bones, bone tissue, and the bone-implant interfaces are as important as their morphological and structural aspects. Mechanical Testing of Bone and the Bone-Implant Interface helps you assess these properties by explaining how to do mechanical testing of bone and the bone-implant interface for bone-related research


The Computational Mechanics of Bone Tissue

The Computational Mechanics of Bone Tissue

Author: Jorge Belinha

Publisher: Springer Nature

Published: 2020-02-11

Total Pages: 249

ISBN-13: 3030375412

DOWNLOAD EBOOK

This book offers a timely snapshot of computational methods applied to the study of bone tissue. The bone, a living tissue undergoing constant changes, responds to chemical and mechanical stimuli in order to maximize its mechanical performance. Merging perspectives from the biomedical and the engineering science fields, the book offers some insights into the overall behavior of this complex biological tissue. It covers three main areas: biological characterization of bone tissue, bone remodeling algorithms, and numerical simulation of bone tissue and adjacent structures. Written by clinicians and researchers, and including both review chapters and original research, the book offers an overview of the state-of-the-art in computational mechanics of bone tissue, as well as a good balance of biological and engineering methods for bone tissue analysis. An up-to-date resource for mechanical and biomedical engineers seeking new ideas, it also promotes interdisciplinary collaborations to advance research in the field.