This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.
Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.
In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
In Advanced Equity Derivatives: Volatility and Correlation, Sébastien Bossu reviews and explains the advanced concepts used for pricing and hedging equity exotic derivatives. Designed for financial modelers, option traders and sophisticated investors, the content covers the most important theoretical and practical extensions of the Black-Scholes model. Each chapter includes numerous illustrations and a short selection of problems, covering key topics such as implied volatility surface models, pricing with implied distributions, local volatility models, volatility derivatives, correlation measures, correlation trading, local correlation models and stochastic correlation. The author has a dual professional and academic background, making Advanced Equity Derivatives: Volatility and Correlation the perfect reference for quantitative researchers and mathematically savvy finance professionals looking to acquire an in-depth understanding of equity exotic derivatives pricing and hedging.
Provides a thorough discussion of volatility, the most important aspect of options trading. Shows how to identify mispriced options and to construct volatility and "delta neutral" spreads.
Abstract: Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S & P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.