Modeling, Simulation, and Optimization

Modeling, Simulation, and Optimization

Author: Pandian Vasant

Publisher: Springer

Published: 2017-12-07

Total Pages: 133

ISBN-13: 3319705423

DOWNLOAD EBOOK

This book features selected contributions in the areas of modeling, simulation, and optimization. The contributors discusses requirements in problem solving for modeling, simulation, and optimization. Modeling, simulation, and optimization have increased in demand in exponential ways and how potential solutions might be reached. They describe how new technologies in computing and engineering have reduced the dimension of data coverage worldwide, and how recent inventions in information and communication technology (ICT) have inched towards reducing the gaps and coverage of domains globally. The chapters cover how the digging of information in a large data and soft-computing techniques have contributed to a strength in prediction and analysis, for decision making in computer science, technology, management, social computing, green computing, and telecom. The book provides an insightful reference to the researchers in the fields of engineering and computer science. Researchers, academics, and professionals will benefit from this volume. Features selected expanded papers in modeling, simulation, and optimization from COMPSE 2016; Includes research into soft computing and its application in engineering and technology; Presents contributions from global experts in academia and industry in modeling, simulation, and optimization.


Modeling, Simulation, and Optimization of Supply Chains

Modeling, Simulation, and Optimization of Supply Chains

Author: Ciro D'Apice

Publisher: SIAM

Published: 2010-07-01

Total Pages: 209

ISBN-13: 0898717000

DOWNLOAD EBOOK

This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.


Modeling, Simulation and Optimization

Modeling, Simulation and Optimization

Author: Biplab Das

Publisher: Springer Nature

Published: 2021-03-17

Total Pages: 802

ISBN-13: 9811598290

DOWNLOAD EBOOK

This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization, organized by National Institute of Technology, Silchar, Assam, India, during 3–5 August 2020. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy system and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.


Reduced-Order Modeling (ROM) for Simulation and Optimization

Reduced-Order Modeling (ROM) for Simulation and Optimization

Author: Winfried Keiper

Publisher: Springer

Published: 2018-04-11

Total Pages: 184

ISBN-13: 3319753193

DOWNLOAD EBOOK

This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.


Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Author: Simone Göttlich

Publisher: Springer Nature

Published: 2021-02-02

Total Pages: 333

ISBN-13: 3030627322

DOWNLOAD EBOOK

This edited monograph offers a summary of future mathematical methods supporting the recent energy sector transformation. It collects current contributions on innovative methods and algorithms. Advances in mathematical techniques and scientific computing methods are presented centering around economic aspects, technical realization and large-scale networks. Over twenty authors focus on the mathematical modeling of such future systems with careful analysis of desired properties and arising scales. Numerical investigations include efficient methods for the simulation of possibly large-scale interconnected energy systems and modern techniques for optimization purposes to guarantee stable and reliable future operations. The target audience comprises research scientists, researchers in the R&D field, and practitioners. Since the book highlights possible future research directions, graduate students in the field of mathematical modeling or electrical engineering may also benefit strongly.


Chemical Process Retrofitting and Revamping

Chemical Process Retrofitting and Revamping

Author: Gade Pandu Rangaiah

Publisher: John Wiley & Sons

Published: 2016-01-29

Total Pages: 432

ISBN-13: 1119016304

DOWNLOAD EBOOK

The proposed book will be divided into three parts. The chapters in Part I provide an overview of certain aspect of process retrofitting. The focus of Part II is on computational techniques for solving process retrofit problems. Finally, Part III addresses retrofit applications from diverse process industries. Some chapters in the book are contributed by practitioners whereas others are from academia. Hence, the book includes both new developments from research and also practical considerations. Many chapters include examples with realistic data. All these feature make the book useful to industrial engineers, researchers and students.


Geometric Modelling, Numerical Simulation, and Optimization:

Geometric Modelling, Numerical Simulation, and Optimization:

Author: Geir Hasle

Publisher: Springer Science & Business Media

Published: 2007-06-10

Total Pages: 559

ISBN-13: 3540687831

DOWNLOAD EBOOK

This edited volume addresses the importance of mathematics for industry and society by presenting highlights from contract research at the Department of Applied Mathematics at SINTEF, the largest independent research organization in Scandinavia. Examples range from computer-aided geometric design, via general purpose computing on graphics cards, to reservoir simulation for enhanced oil recovery. Contributions are written in a tutorial style.


Simulation-Based Optimization

Simulation-Based Optimization

Author: Abhijit Gosavi

Publisher: Springer

Published: 2014-10-30

Total Pages: 530

ISBN-13: 1489974911

DOWNLOAD EBOOK

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.


Stochastic Simulation Optimization

Stochastic Simulation Optimization

Author: Chun-hung Chen

Publisher: World Scientific

Published: 2011

Total Pages: 246

ISBN-13: 9814282642

DOWNLOAD EBOOK

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.


Computing Tools for Modeling, Optimization and Simulation

Computing Tools for Modeling, Optimization and Simulation

Author: Manuel Laguna

Publisher: Springer Science & Business Media

Published: 1999-11-30

Total Pages: 330

ISBN-13: 9780792377184

DOWNLOAD EBOOK

Computing Tools for Modeling, Optimization and Simulation reflects the need for preserving the marriage between operations research and computing in order to create more efficient and powerful software tools in the years ahead. The 17 papers included in this volume were carefully selected to cover a wide range of topics related to the interface between operations research and computer science. The volume includes the now perennial applications of rnetaheuristics (such as genetic algorithms, scatter search, and tabu search) as well as research on global optimization, knowledge management, software rnaintainability and object-oriented modeling. These topics reflect the complexity and variety of the problems that current and future software tools must be capable of tackling. The OR/CS interface is frequently at the core of successful applications and the development of new methodologies, making the research in this book a relevant reference in the future. The editors' goal for this book has been to increase the interest in the interface of computer science and operations research. Both researchers and practitioners will benefit from this book. The tutorial papers may spark the interest of practitioners for developing and applying new techniques to complex problems. In addition, the book includes papers that explore new angles of well-established methods for problems in the area of nonlinear optimization and mixed integer programming, which seasoned researchers in these fields may find fascinating.