Discontinuous Deformation Analysis in Rock Mechanics Practice

Discontinuous Deformation Analysis in Rock Mechanics Practice

Author: Yossef H. Hatzor

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 449

ISBN-13: 1317416929

DOWNLOAD EBOOK

The numerical, discrete element, Discontinuous Deformation Analysis (DDA) method was developed by Dr. Gen-hua Shi while he was working at the University of California, Berkeley, under the supervision of Prof. Richard E. Goodman in the late 1980s. Two-dimensional DDA was published in 1993 and three-dimensional DDA in 2001. Since its publication DDA has been verified, validated and applied in numerous studies worldwide and is now considered a powerful and robust method to address both static and dynamic engineering problems in discontinuous rock masses. In this book Yossef H. Hatzor and Guowei Ma, co-chairs of the International Society for Rock Mechanics (ISRM) Commission on DDA, join Dr. Shi in authoring a monograph that presents the state of the art in DDA research. A comprehensive discussion of DDA development since its publication is provided in Chapter 1, followed by concise reviews of 2D and 3D DDA in chapters 2 and 3. Procedures to select geological and numerical input parameters for DDA are discussed in Chapter 4, and DDA validation and verification is presented in Chapter 5. Applications of DDA in underground and rock slope engineering projects are discussed in chapters 6 and 7. In Chapter 8 the novel contact theory recently developed by Dr. Shi is published in its complete form, for the first time. This book is published within the framework of the ISRM Book Series and is the contribution of the ISRM DDA Commission to the international rock mechanics community.


Development of a 3D Equivalent Continuum Model for Deformation Analysis of Systematically Jointed Rock Masses

Development of a 3D Equivalent Continuum Model for Deformation Analysis of Systematically Jointed Rock Masses

Author: Alireza Agharazi

Publisher:

Published: 2013

Total Pages: 142

ISBN-13:

DOWNLOAD EBOOK

Deformability of jointed rock masses are potentially anisotropic and non-linear due to existence of the discontinuities intersecting the rock matrix. Models to analysis the deformation of jointed rock masses are divided into two main categories: discontinuum models and equivalent continuum models. Discontinuum models treat the rock mass as an assemblage of intact rock blocks interacting at their boundaries. Discontinuities are simulated explicitly using appropriate contact models. However, when the number of discontinuities in a model increases, the explicit definition of discontinuities become difficult and, in some cases, impractical. Equivalent continuum models provide an alternative to discontinuum models for such cases. In these models, the behaviour of a jointed rock mass is approximated by the analysis of its equivalent continuum. The discontinuities are taken into account implicitly, either by implementing proper constitutive relations or by adopting appropriate mechanical parameters. In this research, the principal deformation mechanisms for a jointed rock mass are defined and characterized by the detailed analysis of the results of a series of plate loading tests conducted on the rock mass. A new three dimensional equivalent continuum model, the JointedRock model, is formulated to simulate the observed deformation mechanisms. The constitutive equations are presented in a tensor form so the model can be applied for any arbitrary spatial configuration of discontinuities. A Mohr-Coulomb failure criterion is used to check failure of intact rock blocks and slip along the rock joints. The JointedRock model is implemented in the finite difference code FLAC3D and is verified against the distinct element method (3DEC) and, where available, analytical solutions. A new method is proposed for interpretation of the results of plate loading tests conducted on jointed rock masses. The method is used to interpret the results of the study tests and to determine the anisotropic deformation modulus of the rock mass.


Discontinuous Deformation Analysis in Rock Mechanics Practice

Discontinuous Deformation Analysis in Rock Mechanics Practice

Author: Yossef H. Hatzor

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 390

ISBN-13: 1317416937

DOWNLOAD EBOOK

The numerical, discrete element, Discontinuous Deformation Analysis (DDA) method was developed by Dr. Gen-hua Shi while he was working at the University of California, Berkeley, under the supervision of Prof. Richard E. Goodman in the late 1980s. Two-dimensional DDA was published in 1993 and three-dimensional DDA in 2001. Since its publication DDA has been verified, validated and applied in numerous studies worldwide and is now considered a powerful and robust method to address both static and dynamic engineering problems in discontinuous rock masses. In this book Yossef H. Hatzor and Guowei Ma, co-chairs of the International Society for Rock Mechanics (ISRM) Commission on DDA, join Dr. Shi in authoring a monograph that presents the state of the art in DDA research. A comprehensive discussion of DDA development since its publication is provided in Chapter 1, followed by concise reviews of 2D and 3D DDA in chapters 2 and 3. Procedures to select geological and numerical input parameters for DDA are discussed in Chapter 4, and DDA validation and verification is presented in Chapter 5. Applications of DDA in underground and rock slope engineering projects are discussed in chapters 6 and 7. In Chapter 8 the novel contact theory recently developed by Dr. Shi is published in its complete form, for the first time. This book is published within the framework of the ISRM Book Series and is the contribution of the ISRM DDA Commission to the international rock mechanics community.


Development and Application of Discontinuous Modelling for Rock Engineering

Development and Application of Discontinuous Modelling for Rock Engineering

Author: Ming Lu

Publisher: CRC Press

Published: 2021-07-29

Total Pages: 280

ISBN-13: 1000446808

DOWNLOAD EBOOK

The thirty papers published in this book represent the latest developments in Discontinuous Deformation Analysis (DDA). The Numerical Manifold Method (NMM) and other numerical methods and their applications are also covered, as are the theoretical contributions of 3D DDA, modelling and visualization of 3D joint systems, and high-order NMM. Applications of these advances include the stability of underground works, rock slopes and boreholes.


Rock Mechanics and Engineering Volume 3

Rock Mechanics and Engineering Volume 3

Author: Xia-Ting Feng

Publisher: CRC Press

Published: 2017-04-21

Total Pages: 916

ISBN-13: 1317481941

DOWNLOAD EBOOK

Analysis, Modeling & Design is the third volume of the five-volume set Rock Mechanics and Engineering and contains twenty-eight chapters from key experts in the following fields: - Numerical Modeling Methods; - Back Analysis; - Risk Analysis; - Design and Stability Analysis: Overviews; - Design and Stability Analysis: Coupling Process Analysis; - Design and Stability Analysis: Blast Analysis and Design; - Rock Slope Stability Analysis and Design; - Analysis and Design of Tunnels, Caverns and Stopes. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.


Discontinuity Analysis for Rock Engineering

Discontinuity Analysis for Rock Engineering

Author: S.D. Priest

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 9401114986

DOWNLOAD EBOOK

Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering.